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Abstract

The exponentiated Gumbel (EG) distribution has been proposed as a generalization
of the classical Gumbel distribution. In this paper we discuss estimation of T -year return
values for significant wave height in a case study and compare point estimates and their
uncertainties to the results given by alternative approaches using Gumbel or Generalized
Extreme Value distributions. A jackknife approach is made to investigate the sensitivity
of the parameter estimates and various model selection criteria are employed to compare
the models. When examining Anderson–Darling distances between samples and extreme-
value distribtions, the EG distribution turns out to give the closest fit. However, general
recommendations whether to use Gumbel or EG distribution cannot be given.

Keywords: Gumbel distribution, exponentiated distributions, return value, significant wave
height, model selection.

1. Introduction

A frequently occurring problem in statistics is model selection and related issues. In stan-
dard applications like regression analysis, model selection may be related to the number of
independent variables to include in a final model. In some applications of statistical extreme-
value analysis, convergence to some standard extreme-value distributions is crucial. A choice
has occasionally to be made between special cases of distributions versus the more general
versions. In this paper, statistical properties of a recently proposed distribution is examined
closer and a case study is performed where comparison is made to classical distributions.
In applications of extreme-value analysis to risk analysis, computation of return levels are of
importance, often for some quantity obtained from environmental data (wind speeds, wave
heights, maximum rainfall). The 100-year return level is a value which is exceeded in average
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only once per 100 years. Usually this is estimated as a quantile of some extreme-value dis-
tribution, as will be defined in Section 3.2 (see Chapter 10 in Rychlik and Rydén (2006) for
elementary discussion). The uncertainty of the obtained point estimate of the return level is
of interest and might be considerable; hence related confidence intervals are of interest. In
extreme-value analysis, it is shown that the maximum of many of the common distributions
(normal, lognormal) converges to the Gumbel distribution,

F (x) = exp
{
− exp

(
−x− µ

σ

)}
, −∞ < x <∞,

where σ > 0, −∞ < µ < ∞. This is a special case of the so-called Generalized Extreme
Value (GEV) distribution and in the literature of probabilistic risk analysis, there has been
discussion about the choice of Gumbel compared to GEV. To quote Coles and Pericchi (2003),
where analysis of rainfall measurements was made: “Although standard tests may support a
reduction to the Gumbel family, this is a risky strategy.” Similar conclusions are given by
Koutsoyiannis and Baloutsos (2000). The Gumbel distribution yields narrower confidence
intervals than the three-parameter GEV but has also the risk of under-estimating the return
level. Hence, the choice of distribution is not trivial.

Recently, a generalization of the Gumbel distribution, called the exponentiated Gumbel (EG)
distribution, was introduced (Nadarajah, 2006):

FEG(x) = 1−
[
1− exp

{
− exp

(
−x− µ

σ

)}]α

, −∞ < x <∞, (1)

where α > 0, σ > 0. Moreover, hazard-rate functions, moments, asymptotics and maximum-
likelihood functions were presented. A numerical illustration was given; computation of return
levels for one single data set of annual maximum daily rainfall. A comparison was made with
the Gumbel and GEV distributions where the EG distribution proved to be advantageous.

In this article, we further extend the analysis of the EG. Based on real data sets, return levels
are computed. The resulting point estimates are compared with results based on Gumbel and
GEV by performing a model selection based on deviance. As the question of uncertainty of
estimates is important, we give related approximate confidence intervals for the return levels.
The datasets are observations of significant wave height and originate from two buoys in
the Pacific Ocean. The data was chosen because of the authors’ interest in and experience of
modelling such quantities, cf. e.g. Rychlik, Rydén and Anderson (2009), where new estimation
methodologies are presented based on theory for crossings in stationary Gaussian processes.
Measurements of this type have often been collected for a time period of the order of some
decades; hence, when regarding annual maxima, relatively small samples result.

The paper is organized as follows: in the next section, we give a brief orientation on ex-
ponentiated distributions. In Section 3, estimation of T -year return values is discussed and
expressions for confidence intervals by the delta method are explicitly stated. The remaining
sections are devoted to data analysis: in Section 4, two data sets are fitted to the EG dis-
tribution and we discuss whether the fit is reasonable. Moreover, in Section 5, comparison
of the results for T -year return values using EG, GEV and Gumbel distributions is made,
using various model selection criteria, such as deviance and comparison of Anderson Darling
distances.
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2. On exponentiated distributions

During the first half of the nineteenth century, certain cumulative distributions were intro-
duced by B. Gompertz and P.F. Verhulst, for instance

F (x; θ, ρ, σ) = (1− ρe−x/σ)θ, x > σ ln ρ,

see Ahuja and Nash (1967). More recently, the exponentiated exponential family, with dis-
tribution function

F (x; α,λ) = (1− e−λx)α, α, λ > 0, x > 0,

has been extensively studied in a number of papers by Gupta and Kundu, see for instance
Gupta and Kundu (2001). The families of exponential and Weibull distributions are found
within the exponentiated exponential distribution and therefore studies were performed to
investigate asymptotic results as well as fits to data sets. More generally, distributions F (x) =
[G(x)]α where G(x) is a distribution family and α > 0 are occasionally called Lehmann
alternatives in the context of modelling of failure times (Gupta, Gupta and Gupta 1998).
However, note that the definition in Eq. (1) is rather of the form FEG(x) = 1− [1−G(x)]α,
where G(x) is the distribution function of the Gumbel distribution. In this paper, we have
kept this definition, as it was stated by Nadarajah (2006). A reparametrization is possible.
Turning to extreme-value distributions, various forms of generalized extreme-value distribu-
tions have been proposed in the literature, e.g. a four-parameter distribution by Scarf (1992).
For a review see Kotz and Nadarajah (2000), Chapter 2.7. We find it interesting to com-
pare the three-parameter EG distribution to another three-parameter family — the GEV
distribution — as well as the Gumbel distribution (EG with α = 1). The general class of
exponentiated distributions is closed under maximum (Gupta and Kundu 2007), that is, if
X1, . . . , Xn are iid random variables then the Xi variables are exponentiated random variables
if and only if the maximum of X1, . . . , Xn is an exponentiated random variable.

3. Extreme-value modelling

In this section we first give a brief review on classical extreme-value modelling and then
present the estimation framework for the exponentiated Gumbel distribution. For further
reference, consult Coles (2001) or Rychlik and Rydén (2006).
Suppose X1, . . . , Xn is a sequence of independent and identically distributed variables, and
let Mn = max{X1, . . . , Xn}. Classical extreme-value theory is concerned with the limiting
distribution of Mn as n → ∞, or rather its normalized version: If there exist sequences of
constants {an > 0} and {bn} such that

P((Mn − bn)/an ≤ x)→ F (x) as n→∞,

the Extremal Types Theorem states that G must belong to one of three families of distribu-
tions (Gumbel, Frechet and Weibull). These can combined into a single family, the Generalized
Extreme Value (GEV) distribution

F (x) =
{

exp(−(1− ξ(x− µ)/σ)1/ξ), ξ %= 0,
exp(− exp(−(x− µ)/σ)), ξ = 0,
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for x > σ/ξ + m (when ξ ≤ 0) and x < σ/ξ + m (when ξ > 0). As the special case ξ = 0 is
found the Gumbel distribution.
A common procedure in applications to environmental data is the method of block maxima.
The original sequence is broken up into blocks of size n, say, and the maximum observation
is extracted from each block. For the resulting sequence of iid observations, an extreme-value
distribution is fitted. Often in applications the block size is chosen to be one year, and the
goal is to estimate quantiles of the distribution of block maxima, so-called return levels. The
method of block maxima is robust and used in codes but lots of data are disregarded. Other
approaches exist, for instance threshold methods.
Often measurements are made at networks of stations, and a statistical problem is then to
pool the information. It is out of the scope of this paper though to discuss such procedures; we
focus at data collected at one individual setting at a time and then use the classical approach
of block maxima.

3.1. ML estimation of exponentiated Gumbel distribution

In this section we present formulae related to estimation in the EG distribution. Asymptotic
results and aspects on estimation were given in Nadarajah (2006). We do not explicitly give
the corresponding formulae for the Gumbel distribution or GEV distribution although these
are used later in the analysis of the data sets but refer to textbooks on extreme-value analysis
and its applications, e.g. Rychlik and Rydén (2006), Chapter 10.
In the sequel we consider estimation by the method of maximum likelihood (ML). However,
note that specialized procedures have been developed in the literature for estimation of pa-
rameters in extreme-value distributions (Coles and Dixon, 1999). The log-likelihood for a
random sample x1, . . . , xn from the exponentiated Gumbel distribution is found in Nadarajah
(2006) and we present it again here for the reader’s convenience:

log L(α,σ, µ) = n log α− nσ + (α− 1)
n∑

i=1

log(1− e−e−
xi−µ

σ )

−
n∑

i=1

xi − µ

σ
−

n∑

i=1

e−
xi−µ

σ .

Moreover, the first-order derivatives of l(α,σ, µ) = log L(α,σ, µ) with respect to the three
parameters are:

∂l

∂α
=

n

α
+

n∑

i=1

log(1− e−e−
xi−µ

σ )

∂l

∂σ
= −n

σ

n∑

i=1

xi − µ

σ2
(1− e−

xi−µ
σ ) +

α− 1
σ2

n∑

i=1

(xi − µ)e−
xi−µ

σ e−e−
xi−µ

σ

1− e−e−
xi−µ

σ

,

∂l

∂µ
=

n

σ
− 1

σ

n∑

i=1

e−
xi−µ

σ +
α− 1

σ

n∑

i=1

e−
xi−µ

σ e−e−
xi−µ

σ

1− e−e−
xi−µ

σ

.

By using approximate normality of ML estimates, the so-called delta method can be applied
to construct approximate confidence intervals for functions of the estimated parameters, in
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our case, the T -year return level. (Note that in the literature on statistical extreme-value
analysis, intervals based on profile likelihood are usually preferred (see e.g. Coles and Dixon
1999) and bootstrap approaches have also been suggested. We find it though out of the scope
of this article to evaluate different methods for obtaining confidence intervals.)

3.2. T -year return values and related intervals

In hydrology, oceanography and other fields of application, the T -year return level xT is
defined through the relation F (xT ) = 1− 1/T and for the EG distribution it follows that an
estimate is given by

x̂T = µ̂− σ̂ ln(− ln(1− (1/T )1/α̂)).

For the convenience of the reader and possible future implementations, we give some details
of the confidence interval for the return level as obtained by the delta method:

(x̂T − λα/2D̂ ≤ xT ≤ x̂T + λα/2D̂).

Here
D̂2 = ∇xT (α̂, σ̂, µ̂)TΣ̂∇xT (α̂, σ̂, µ̂),

where the gradient vector is

∇xT (α̂, σ̂, µ̂) =
[
∂x̂T

∂α
,

∂x̂T

∂σ
,

∂x̂T

∂µ

]

where the derivatives of the T -year return wave with respect to the parameters are

∂xT

∂α
=

σT−1/α lnT

α2(1− T−1/α) ln(1− T−1/α)
∂xT

∂σ
= − ln(− ln(1− (1/T )1/α)

∂xT

∂µ
= 1

and an estimated covariance matrix is given as

Σ̂ =
[
−l̈(α̂, σ̂, µ̂)

]−1
. (2)

4. Fitting of data

In oceanography and ocean engineering, the quantity of significant wave height (Hs) is studied.
This is defined as the average height of the highest one third wave amplitudes at a given
location. Data originate from buoy measurements with Hs reported hourly, calculated as the
average of the highest one-third of all of the wave heights during 20-minute sampling periods.
Assuming independence between years, the method of block maxima (annual maxima) will
be used; the most basic methodology for estimation of return values. It is a well established
model in the literature that the limiting extreme-value distribution for data of this type is
Gumbel; hence, it is of interest to also study the EG distribution.



6 Exponentiated Gumbel Distribution

4.1. Description of data

Data for a number of buoys are available online from National Data Buoy Center (NDBC).
We studied two buoys situated in the North East Pacific: Buoy 46005 (46 N, 131 W) and
Buoy 46006 (41 N, 137 W). The time period January 1, 1983, to December 31, 2003, was
investigated. For each calendar year, the maximum observation was extracted; hence, for
each buoy 21 yearly maxima were found. We assume for simplicity independent samples, for
instance no trend present. Moreover, we choose to study calendar years although seasonal
years where seasons are kept together might be more advantageous for important estimations.
However, the main purpose of this study is to investigate the statistical aptness of the EG
distribution: in itself and in comparison to related extreme-value distributions.

Dataset 1 (Buoy 46005): Yearly maxima of Hs (m)

10.70 10.70 7.00 11.30 13.60 11.70 8.20
12.00 9.30 8.80 11.00 11.90 9.20 8.71
9.63 9.87 13.04 9.79 12.26 11.52 12.92

Dataset 2 (Buoy 46006): Yearly maxima of Hs (m)

12.90 8.80 11.80 12.70 11.70 9.10 8.40
9.60 7.20 9.80 10.80 10.10 11.20 9.56
8.25 12.47 16.32 14.65 12.78 14.23 11.21

4.2. Estimation and investigation of fit

In this subsection the EG distribution is fitted to data: parameters are estimated by the
method of maximum likelihood, and 100-year return values are computed along with confi-
dence intervals obtained by the delta method.
Optimization was carried out using R, where the results from two methods were examined:
a simplex method based on Nelder and Mead (1965) and a quasi Newton method BFGS. It
turned out that optimization can be tricky, due to several local minima of the loglikelihood
function. In particular, dataset 1 implied problems. These results are presented in Table 1.
Note for instance the difference between methods for parameter estimates of Dataset 1 – in
particular α̂. However, the estimated x̂100 will be roughly the same for any of these two
parameter settings. For practical purposes, return values are of interest, e.g. for T = 100.
These quantities and related 95% confidence intervals were computed (by the delta method).
For Dataset 1, one finds x̂100 = 14.2 m (12.4, 16.0), while for Dataset 2, x̂100 = 17.6 m
(13.0, 22.3).

Dataset 1 Nelder-Mead BFGS
α̂ 100.31 32.76
σ̂ 7.32 5.74
µ̂ 22.49 18.46
Dataset 2 Nelder-Mead BFGS
α̂ 2.19 2.20
σ̂ 2.94 2.94
µ̂ 11.67 11.68
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Table 1. Results from estimation.

Diagnostic plots in the form of QQ plots of residuals after fitting are presented in Figures 1-2.
These plots seem to indicate a reasonable fit of the EG distribution; the dots in the QQ plot
follow a straight line, etc.
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Figure 1: Dataset 1. Left: Empirical and fitted cdf. Right: QQ plot of residuals after fitting.
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Figure 2: Dataset 2. Left: Empirical and fitted cdf. Right: QQ plot of residuals after fitting.

The sensitivity of data is investigated by removing one observation at a time in the sorted
sample and estimating α̂, σ̂ and µ̂. Thus sample i consists of 20 observations with the ith
component removed. Denote by θ̂(i) the ith estimate of a parameter and the sample mean of
the estimates by θ̂(.). Then the jackknife estimate of the standard error is defined by

d̂jack =
√

n− 1
n

(
θ̂(i) − θ̂(.)

)2

and assuming normally distributed estimates, a 95 percent confidence interval for θ can be
constructed as (θ̂ ± 1.96 d̂jack). The resulting 95% confidence intervals for x100 are similar
to those computed before: For Dataset 1, the interval (12.6, 15.7) is found; for Dataset 2,
(12.9, 22.4).



8 Exponentiated Gumbel Distribution

5. Comparison with other extreme-value distributions

In this section other extreme-value distributions are considered, e.g. the Generalized Extreme
Value distribution (GEV)

F (x) =
{

exp(−(1− ξ(x− µ)/σ)1/ξ), ξ %= 0,
exp(− exp(−(x− µ)/σ)), ξ = 0,

for x > σ/ξ + m (when ξ ≤ 0) and x < σ/ξ + m (when ξ > 0). As the special case ξ = 0
is found the Gumbel distribution. The focus is now on model selection and we investigate
the results from two approaches: performance of a likelihood-ratio test and computation of
Anderson–Darling distance. In addition, 100-year return values and the related confidence
intervals are calculated.

5.1. Comparing models

With competing models as possible explanations of a set of data, a likelihood approach can be
used, based on the fact that a log-likelihood (LL) ratio statistic is asymptotically chi-square
distributed. The following log-likelihoods were found for the data sets

LL Dataset 1 Dataset 2
EG −40.8584 −46.6529

GEV −40.6890 −46.6315
Gumbel −42.6171 −46.8145

We note that GEV has the highest log-likelihood in both samples, the EG distribution has the
second highest and Gumbel the lowest. These values can be used to test the null hypothesis
of Gumbel distribution, since this is a special case of both EG (α = 1) and GEV (ξ = 0).
The statistics 2(LL(EG)− LL(Gumbel)) and 2(LL(GEV)− LL(Gumbel)) are approximately
chi-square distributed with one degree of freedom. The following values were obtained from
the chi-square distribution:

Test p value (Data 1) p value (Data 2)
EG vs Gumbel 0.06 0.57

GEV vs Gumbel 0.05 0.54

For Dataset 1, we note from the table that the hypothesis of Gumbel practically can be
rejected at a 5 percent significance level, while for Dataset 2, the hypothesis cannot be rejected.
Alternatively, an asymptotic test for shape parameter equal to zero, proposed by Hosking,
Wallis and Wood (1985), gives that the hypothesis of Gumbel distribution is rejected for
Dataset 1 (p value 0.015).
Next, the Anderson–Darling distance is used to study the differences between the samples
and distribution functions. This is given for a distribution function Fθ(x) by the formula

DAD =
1
n2

n∑

i=1

(2i− 1)
[
lnFθ(x(i)) + ln(1− Fθ(x(n+1−i)))

]
− 1

where x(1), . . . , x(n) is the ordered sample; see e.g. Boos (1982). The distance DAD is usu-
ally considered superior to other distances (like Kolmogorov–Smirnov) with respect to tail
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behaviours. Values of differences as measured with DAD are given in the table below from
which we conclude that for both datasets, EG has the lowest discrepancy. Curiously, the
Gumbel distribution in both cases gives a closer fit to data than the GEV.

DAD Dataset 1 Dataset 2
EG 0.0089 0.030

GEV 1.06 5.75
Gumbel 0.018 0.38

In summary, GEV had the highest log-likelihood in both samples, EG the second highest and
the Gumbel distribution the lowest log-likelihood. Considering Anderson–Darling distance
DAD, EG gives the closer fit; hence one cannot say whether EG or GEV provides the better
fit. The Gumbel distribution had the lowest log-likelihood and second smallest DAD. This
indicates that the Gumbel distribution is not as good model as the EG and the GEV. On the
other hand, the Gumbel distribution is a special case of GEV and naturally it has a smaller
flexibility in modelling the data. In statistics it is not recommended to use more complicated
models than needed to describe data adequately and, therefore, this model can be preferable
in certain circumstances.

5.2. 100-year return values and confidence intervals

Estimation was carried out for the two data sets by fitting to the three distributions considered.
Point estimates and confidence intervals are found in Table 2 from which we conclude that
GEV and EG yield point estimates of return values practically the same. However, the
confidence intervals for GEV are much wider than those for EG which makes an interesting
observation.

Dataset 1
x100 (m) Confidence interval

EG 14.2 (12.4, 16.0)
GEV 14.3 (8.2, 20.4)
Gumbel 17.5 (14.6, 20.3)
Dataset 2

x100 (m) Confidence interval
EG 17.7 (13.0, 22.3)
GEV 17.6 (2.7, 32.5)
Gumbel 19.0 (15.6, 22.4)

Table 2. Estimation of 100-year return values

5.3. Longer return periods

In this subsection we investigate the behaviour of the three distributions as a function of
return period T . In many applications, it is not uncommon to calculate with return periods
as high as 10 000 years, corresponding to very small risks.
In Figure 3, the estimates are shown for the two buoys investigated earlier. In the left panel,
the results from the Gumbel distribution seem to deviate from the others which would be
expected from the likelihood-ratio test earlier. Recall that for Dataset 1, the hypothesis of a
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Gumbel distribution is not rejected at the level 0.05. The difference between EG and GEV is
about 2 metres for longer return periods, about one metre for return periods less than 1000
years. In the right panel, the differences between the established distributions Gumbel and
GEV are quite large for high values of T and the EG distribution gives an intermediate result.
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Figure 3: Return values as a function of return period T . Left: Dataset 1; Right: Dataset 2.

However, the authors did also have access to 21 yearly maxima from Buoy 44004, and the
corresponding results are shown in Figure 4. Here the estimates by the EG distributions are
the highest, although for practical purposes, the results from the Gumbel distribution are
close (and α̂ = 0.97). For this data set, the point estimates are close and the difference in
confidence interval may be interesting to study (though not shown here). In summary, based
on the analysis of the three datasets, no general conclusion can be drawn about the behaviour
of the EG distribution with respect to GEV and Gumbel.
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Figure 4: Return value as a function of return period T (Buoy 44004).
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6. Concluding remarks

The purpose of this paper was to extend the analysis of the recently introduced EG distri-
bution by investigating estimation of T -year return values for significant wave height. From
an applied point of view, such estimations are by no ways trivial and the method of block
maxima is the classical, and most simplest, way to proceed. Nevertheless, use of this method
is often employed due to its simplicity and may serve as a benchmark when evaluating other,
more refined methods (like e.g. threshold methods).
We investigated two datasets with values of about the same order. However, the estimated
parameter values possessed a high variability, in particular the estimate of the shape parameter
α (100 respectively 2). The authors performed simulation studies and found that it is not
unlikely to receive high values of α (for parameter settings used in this paper, α as high as
2000 could be found). However, even with such high values, the estimates of return values
are not affected but behave in a stable way. An explanation could be the maximization of
the likelihood; the objective function might be flat around the extremum. Moreover, the
estimators α, σ, µ are positively correlated. It might be interesting to test other estimation
strategies, e.g. the method of moments, possibly in a future work.
Nevertheless, the statistical analysis of datasets indicate that the EG distribution could serve
as an alternative to the more well-established GEV distribution (also a three-parameter distri-
bution). In particular, for the data analysed, EG renders narrower confidence intervals than
GEV and has for both datasets the smallest Anderson–Darling distance of the distributions
examined. The EG distribution deserves further studies, theoretical (estimation methodology)
as well as practical (analysis of further datasets).
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