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Abstract

Environmental data often include left-censored values reported to be less than some limit
of detection (LOD). While simple imputation of a specific value such as LOD/2 is com-
monly implemented in practice, maximum likelihood methods accounting for censoring
provide an alternate way of analyzing such data. Concentration levels of trace metal con-
taminants in water are typically modeled with normal or lognormal distributions. The
corresponding maximum likelihood estimates (MLEs) of means and variances in univariate
analyses can be obtained from standard software packages; however, a multivariate analy-
sis may be more appropriate when multiple measurements are taken from the same entity.
For example, the overall contamination level of freshwater streams may be represented by
a linear combination of several dissolved trace metal amounts present within. Especially
in less polluted areas, one or more of these levels may fall below the LOD. We propose a
multivariate method that provides MLEs of mean and unstructured covariance parame-
ters corresponding to a multivariate normal or lognormal distribution in the presence of
left-censored and missing values. In conducting hypothesis tests and estimating functions
of MLEs with appropriate standard errors, we apply this multivariate method to trace
metal concentration data collected from freshwater streams across the Commonwealth of
Virginia.

Keywords: trace metal concentrations, water quality, limit of detection, maximum likelihood
estimation, multivariate normal distribution.

1. Introduction

Complications arise in the analysis of environmental samples containing potentially hazardous
chemicals due to the presence of various pollutants at trace levels that cannot reliably be dis-
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tinguished from 0 and, therefore, are reported as results that lie numerically below a certain
limit of detection (LOD). The vast array of univariate statistical methods presented in the lit-
erature for estimating measures of centrality and variability in the presence of these nondetects
can be partitioned into three distinct categories: substitution, parametric and nonparametric
methods. Lacking in the literature, however, are extensions of these univariate estimation
techniques to multivariate estimation, which are needed, for instance, in chemical monitoring
problems. See, for example, Gilliom and Helsel (1986), Sanford et al. (1993), and Farnham
et al. (2002). With such multivariate data, estimation is further complicated by the pres-
ence of multiple censoring. Multivariate extensions of univariate estimation techniques that
account for nondetects are required. We present a multivariate maximum likelihood method
for estimating parameters of multivariate normal and lognormal models that appropriately
accounts for the proportion of data falling below the LOD.

Multivariate assay data typically appear in environmental applications. We may examine the
effects of environmental toxins on the health of a population by measuring the cumulative
amount of trace metals in streams with industrial outfalls or particulates in the atmosphere
of a specific site, such as a national park. Missing data in this context can be categorized into
two groups: completely missing and nondetected. Whereas some data may be completely
missing as a result of a flawed assay or data entry errors, other data may be reported only as
falling below a specified LOD. Our primary focus is estimation of parameters of multivariate
assay distributions, such as means and variances, and functions of these parameters in the
presence of missing data.

2. Environmental Application

The concentration levels of certain dissolved trace metals in freshwater streams across the
Commonwealth of Virginia are compared to the worldwide standard using a well-defined
index function and our proposed multivariate method. The Virginia Department of Environ-
mental Quality (VDEQ) provided the data used in this application, which can be found in
the supplemental materials (VDEQ Data).

It is of particular interest to determine the quality of Virginia’s water resources throughout
the state to discover their true usefulness (VDEQ 2003, p. 1). The methodology used to
assess water quality should not underestimate contamination levels thereby compromising
public health and the environment. Neither should it overestimate contamination levels so
that local industry is unfairly restricted.

With an estimated 51,021 miles of perennial rivers and streams, Virginia has a total com-
bined flow of approximately 25 billion gallons of freshwater per day (VDEQ 2008, p. 6.1-1).
By the Federal Clean Water Act and the Virginia Water Quality Monitoring Information
and Restoration Act, the state is required to assess and report on the quality of these state
waters (VDEQ 2008, p. 1.1-1). In addition to the EPA regulations, each state implements
environmental water quality standards that permit water body usages—including drinking,
swimming, farming, fish production, or industrial processes—and quantify the safety asso-
ciated with such uses by measuring acceptable levels of the pollutants present within (US
EPA 1997, p. 49). Of the more than 15,951 miles of rivers and streams studied in 2008,
approximately 34 percent have high water quality that satisfies such designated uses, while
the other 66 percent do not fully support designated uses (VDEQ 2008, p. 1.1-4). Past
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studies reveal that unsatisfactory water quality results primarily from disregarding the E. coli
bacteria standards—largely from agricultural practices, urban runoff, leaking sanitary sewers,
failing septic tanks, domestic animals, and wildlife (VDEQ 2008, p. 1.1-4).

As part of the VDEQ’s ProbMon program, freshwater samples are collected and submitted to
the VA Division of Consolidated Laboratory Services in Richmond, VA for analysis (VDEQ
2003, p. 29). For the application at hand, we use a subset of these data to determine whether
the collective concentration levels of the dissolved trace metals copper (Cu), lead (Pb) and
zinc (Zn) in freshwater streams across Virginia are significantly different from the reported
worldwide standard, while correcting for the water hardness as a function of calcium (Ca)
and magnesium (Mg).

Specifically, we estimate an index function of the concentrations of the trace metals Cu, Pb
and Zn that represents a ratio or difference in the mean contamination level of the given
independent freshwater streams in Virginia relative to the worldwide standard. Since the
water quality standard for each trace metal is a function of Ca and Mg, we view the problem
as follows.

Denote the respective concentrations of the five metals Cu, Pb, Zn, Ca, and Mg by X =
(X1, X2, X3, X4, X5), and assume that X ∼ LN5 (η,T)—multivariate lognormal—with corre-
lation matrix G, where η and T denote the (lognormal) mean vector and covariance matrix,
respectively. In order to calculate a measure of centrality, ideally we would like to normalize
the variables of interest. One approach is to divide the individual metal concentrations by
their respective water quality standard, which is a function of the corresponding hardness
factor. To calculate hardness (mg/L CaCO3) from Ca and Mg, we use the equation

h = H (X4, X5) = 2.497X4 + 4.118X5 (1)

with units reported in mg/L (Ledo de Medina 2000, p. 58). The respective water quality
standards for Cu, Pb and Zn, denoted as f1, f2, and f3, respectively, are then given by

f1 (X4, X5) = h0.8545e−1.702

f2 (X4, X5) = h1.273e−3.259 (2)

f3 (X4, X5) = h0.8473e0.884

with units reported in µg/L (VDEQ 2009, p. 20, 25, 30). Note that the hardness factor must
fall within the closed interval [25 mg/L, 400 mg/L] in order to use these equations.

For this application, the geometric mean—which approximates the median of the lognormal
distribution—is a preferable measure of centrality as compared to the arithmetic mean. So,
the index of interest is

g (X) =

[
3∏
i=1

Xi

fi (X4, X5)

] 1
3

. (3)

The logarithm of the index in (3) is given by

ln [ g (X) ] =
1

3

3∑
i=1

ln (Xi)−
1

3

3∑
i=1

ln [ fi (X4, X5) ] . (4)
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Note that the formulation in (4) can be interpreted as the average difference of the collective
log-transformed concentration levels of Cu, Pb and Zn in the freshwater streams of Virginia
relative to the worldwide standard, whereas (3) designates an average ratio of the two on the
observed scale. A 95% confidence interval about the mean of (4) is thus expected to include
0 if no difference in the trace metal concentrations exists between the freshwater streams of
Virginia and the worldwide standard, whereas a 95% confidence interval about the mean of
(3) indicating no difference would include 1. In order to construct such confidence intervals,
we estimate the expected value and standard error of the index function g (X) given in (3).

The given data consist of the concentration levels of these five dissolved trace metals from 184
independent randomly selected sites in freshwater streams across Virginia. Observe that Cu,
Pb and Zn concentrations are conveniently reported in µg/L of water, whereas Ca and Mg
concentration are suitably reported in mg/L of water, which happen to be the correct units
required for the index of interest. Notably, the freshwater sites are selected with weightings
to give approximately equal numbers of sites in each of five sampling strata determined by
the Strahler Order, a size standard used by the U.S. EPA. VDEQ’s probabilistic monitoring
uses a random tessellation stratified survey design to select stream sample sites (VDEQ 2003,
p. 13-16). Since the measurements are taken at different times, the presence of multiple LOD
values is possible for each trace metal.

Using these data, it is of interest to estimate measures of central tendency and of variability for
each trace metal and estimate the expected value and standard error of the index function that
measures the overall contamination level in freshwater streams throughout Virginia. Since
a number of the recorded levels fall below the LOD assigned to each metal, our proposed
method is utilized to estimate the summary statistics of interest. Imputation—of one-half of
the LOD—is employed for comparison.

3. Statistical Approach

3.1. Background

As seen in the environmental science literature, the two most commonly applied methods
employed in the presence of left-censored data are also the simplest: deletion and substitu-
tion. Especially in biogeochemical studies, it is common practice to interpret the data using
traditional statistical tests after substituting one-half of the LOD for nondetected values.
Deleting—ignoring—the nondetects overestimates the true mean levels and underestimates
variation while ignoring some information. Simulation studies by Singh and Nocerino (2002)
reveal that substituting one-half of the LOD for nondetects yields a biased estimate of the
mean with the highest variability in comparison to other methods used to calculate summary
statistics for censored data. Rather than using a simplistic technique that only accounts for
information in the observed data and in the value of the LOD, one should conduct analyses
that additionally use information contained in the proportion of data that fall below the LOD.

Estimation of summary statistics for censored data is among the most widely researched
topics in the literature where nondetected data appear. While the majority of the publications
reference the same complication brought about by the presence of nondetects, they present
differing opinions as to which method yields the best results. See, for example, Helsel (1990),
Helsel (2005), Travis and Land (1990), Rao et al. (1991), and Singh and Nocerino (2002).
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The predominant methods currently employed to deal with nondetects include:

1. simple substitution methods, which entail replacing censored observations by a constant
and treating them as observed,

2. distributional or parametric methods, which involve fitting a given statistical distribu-
tion to the data with left-censoring and calculating the summary statistics from the
estimated distribution via MLE for censored samples, and

3. nonparametric methods, which assign ranks to the measure—typically assigning the
smallest ranks to the censored values.

It is more advisable to account for left-censored observations by correcting the estimation
method as opposed to correcting the sample. A vast amount of research presented in the
literature recommends applying parametric methods— specifically MLE—adapted for left-
censored observations. See, for example, Helsel (1990), Koo et al. (2002), and Zhao and Frey
(2006). With this approach, we estimate the summary statistics of interest based on the
characteristics of the assumed distribution.

Over the years, numerous authors such as Afifi and Elashoff (1967), Hocking and Smith (1968),
and Morrison (1971) have derived MLEs of parameters of multivariate normal distributions in
the presence of missing observations; however, none of these approaches were directly applied
to left-censored data, which is required in the presence of nondetects. In this paper, we fill
this gap with methods based on the fully parametric MLE associated with the multivariate
normal and lognormal distributions.

3.2. Methods

We begin with a discussion on the construction of the multivariate normal distribution like-
lihood function, which is the backbone of our multivariate MLE tool. Noting that some of
the data are left-censored, the most complex component of the likelihood is the cumulative
distribution function (CDF). We use the delta method to estimate standard errors of the
MLEs as well as means and variances of composite functions. See Casella and Berger (2001,
sec. 5.5.4) for details.

Defining the likelihood function

In order to extend the univariate MLE approach to a multivariate setting, an MLE tool is
developed that constructs the appropriate log-likelihood function accounting for left-censored
values and maximizes this function using the Newton-Raphson optimization method. In
constructing the tool, we give considerable attention to two important factors: starting values
and efficiency issues.

Suppose we have a set of data consisting of p variables measured on each of n independent
subjects, where p < n. Let Y1, . . . ,Yn denote p× 1 random vectors, i.e. Yi = (Yi1, . . . , Yip)

′

for i = 1, · · · , n, belonging to a multivariate distribution with probability density function
(PDF)f (·) and CDF F (·). For the i th subject, we arrange the variables so that the first ri
are observed and the next mi are left-censored. The remaining variables, if any, have missing
values—assumed to be missing completely at random—and, thus, contribute nothing to the

likelihood function. Let si = ri+mi ≤ p. To simplify notation, let Y
(1)
i , . . . , Y

(ri)
i represent the



6 Estimation In the Presence of Left-Censored and Missing Data

ri observed variables and Y
(ri+1)
i , . . . , Y

(si)
i represent themi left-censored values corresponding

to the i th subject. Then the contribution of the i th subject to the likelihood function is given
by

Li (θ) = F
(
LOD

(ri+1)
i , . . . , LOD

(si)
i

∣∣∣ y(1)i , ..., y
(ri)
i

)
f
(
y
(1)
i , ..., y

(ri)
i

)
, (5)

whereF (· |·) is the conditional CDF, and LOD
(j)
i is the LOD corresponding to the j thvariable

of the i th subject—which accommodates different LODs on the same measure that could result
from different labs or LOD change after equipment calibration. For n independent subjects,
the full likelihood function is simply the product of the individual likelihoods for each subject
provided in (5), written as

L (θ) =
n∏
i=1

F
(
LOD

(ri+1)
i , . . . , LOD

(si)
i

∣∣∣ y(1)i , ..., y
(ri)
i

)
f
(
y
(1)
i , ..., y

(ri)
i

)
. (6)

The log-likelihood function, which leads to more tractable computations, is given by

` (θ) =

n∑
i=1

{
ln
[
F
(
LOD

(ri+1)
i , . . . , LOD

(si)
i

∣∣∣ y(1)i , ..., y
(ri)
i

) ]
+ ln

[
f
(
y
(1)
i , ..., y

(ri)
i

) ] }
(7)

Transforming the cumulative distribution function

When data from one sample source contain some censored measures, its contribution to
the likelihood function is through a multivariate normal CDF. In a univariate dimension,
several authors have published relatively good approximations to the normal CDF, such as
the trapezoidal or Simpson’s rules, and callable functions are readily available in standard
statistical software. The reader is referred to Bagby (1995), Shore (2004), Shore (2005),
and Bowling et al. (2009) for further details. Extensions of such methods to multivariate
dimensions, however, lack resolution. Existing algorithms are increasingly computationally
intense as the number of censored variables increases.

Our approach combines a set of transformations on the multivariate normal CDF devised
by Genz (1992) with numerical quadrature. Genz’s transformations simplify the multiple
integration problem by transforming infinite integrals to integrals over a unit hyper-cube.

Suppose a single observation is censored on each of m variables so that construction of the
likelihood requires computation of an m-variate normal CDF. Define the random vector Y =
(Y1, . . . ,Ym)

′
∼ Nm (µ,Σ). We begin with the multivariate normal CDF given by

F (a) =
1

(2π)
m/2 |Σ|1/2

∫ a1

−∞
· · ·
∫ am

−∞
exp

{
−1

2
(y − µ)

′
Σ−1 (y − µ)

}
dy, (8)

where a = (a1, . . . , am)
′

is the vector of upper limits of integration, µ = (µ1, . . . , µm)
′

is the

mean vector, and Σ is the m×m symmetric positive definite variance-covariance matrix.

After conducting a series of tests involving integral transformations, Genz concludes that
accurate multivariate normal probabilities can be computed relatively quickly for applications
having up to ten variables (Genz 1992, p. 148). With this in mind, Genz proposes a series of
transformations to convert the infinite integral to an integral over the unit hyper-cube. More
details are provided in the supplemental materials (GenzDetails).
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Computing the likelihood function

Using his transformations, Genz (1992) applies the Monte-Carlo method to approximately
evaluate the CDF. Necessity requires us to take a different approach. We employ a Newton-
Raphson maximization method which requires multiple computations of the multivariate CDF
over small regions. For the method to converge, approximations of the CDF over these regions
should constitute a smooth surface. The Monte-Carlo method approximations correspond
to spikes over the region due to random sampling error. Numerical quadrature provides a
smooth surface of estimates. We selected the Legendre-Gauss quadrature rule as the numerical
integration method to approximately evaluate the CDF. Specifically, we chose the 8-point
Legendre-Gauss quadrature rule as a reasonable compromise between accuracy and efficiency.

Extending the quadrature method to a multiple integral of m dimensions is relatively straight-
forward. Using Genz’s transformed version of the multivariate normal CDF and the formula-
tion of the n-point Legendre-Gauss quadrature rule presented by Hildebrand (1956, sec. 8.5),
the approximation to the integral is given by

F (b) = e1

∫ 1

0
e2(u1)

∫ 1

0
e3(u1, u2) · · ·

∫ 1

0
em(u1, u2, . . . , um−1)dum−1 · · · du2du1 (9)

where w̃i = 1
2wiand ãi = 1

2 (1 + ai), and {ai}ni=1 and {wi}ni=1 are the abscissas and weights,
defined over [−1, 1], for the n-point Legendre-Gauss rule.

Computations were performed using SAS/IML® software. Custom modules were created
for Legendre-Gauss quadrature and for computation of the likelihood function. The SAS/IML
module NLPNRA was used to perform the Newton-Raphson procedure. All programs written
with SAS software are provided as supplemental materials (Part1-MACROS, Part2-MAIN).
A user’s manual is also provided (User Manual).

Evaluating the method

We evaluated the precision and accuracy of our method in producing estimates of multivariate
normal and lognormal parameters using bias and mean squared error (MSE). We simulated
multivariate normal data—and lognormal data by transformation—for evaluation and com-
parison with the imputation method.

The performance of the proposed multivariate MLE method is analyzed using six groups
(I-VI) of 1000 simulated data sets, each of sample size 25, consisting of four-dimensional
multivariate normal values. The first three groups I, II and III are assigned correlations of
0.3 between each pair of variables and respective censoring percents of 0%, 10% and 25% for
three of the variables. The remaining three groups IV, V and VI are assigned correlations of
0.7 between each pair of variables and respective censoring percents of 0%, 10% and 25% for
three of the variables. The fourth variable is assumed to have no censored values. Without
loss of generality, we assign a mean of 0 and a variance of 1 for each of the variables.

In order to generate a data set with, say, 10% of the values censored for a variable, we find
the 10th quantile of the standard normal distribution, d = Φ−1 (0.10). We consider any value
within the simulated data set falling below d a left-censored value, censored at d.

We simulated standard normal data but can consider nonstandard values by the simple trans-
formation y = σx+µ. Notice that changing the value of the normal means from 0 to µ would
not change the relative bias or relative mean square error. We consider only 0 as the mean
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value—in the normal scale—from here on. We may consider scenarios with arbitrary σ2 by
multiplying each simulated value by σ. This tactic varies the LOD to accommodate the
change in variance so that the percent censoring remains constant. The LOD is thus σd in
the standard normal scale and (exp (d))σin the standard lognormal scale.

In addition to the six scenarios I-VI described above, we consider three values of the coefficient
of variation in the lognormal scale, CV = exp(σ2)− 1: 0.3, 0.5, and 0.7. This is equivalent to
normal-scale variances of σ2 = 0.086, 0.223, and 0.399, respectively.

The imputation method entails imputing one-half of the LOD for the censored observations
and then computing the means and unbiased variances of each of the variables individually, as
well as the Pearson correlations between the variables. Specifically, we begin with lognormal
data and convert to normal data by log transformation. Then we impute by replacing the
normal values falling below the LOD with ln (LOD)−ln (2), which is analogous to replacing the
original lognormal values below LOD with LOD/2. Note that when the percentage of values
below the LOD remains constant, the LOD value shifts to the right as the variance decreases.
Notably, it is this increase in the LOD value that increases the bias of the imputation method.

The multivariate MLE method requires no imputation; rather, the censoring is accounted for
in construction of the likelihood function. We derive the MLEs of the lognormal parameters
from the multivariate normal parameters using the invariance property.

Evaluation results

The complete set of the method evaluation results is provided as supplemental material
(MethEvalRslts). We present here in Table 1 a representative subset that is typical of the
complete set of results. Specifically, in Table 1 we provide the ratio of imputation MSE to
multivariate MLE MSE for the mean, variance and correlation estimates obtained from the
set of simulated data with assigned variances of 0.223 and correlations of 0.7 for 0%, 10%
and 25% censoring—groups (IV), (V), and (VI). For each of the parameters, notice that the
ratios are all greater than 1 with the exception of the correlations, meaning that the imputa-
tion method had higher MSE than the multivariate MLE method overall. Since we are not
performing any imputation with 0% censoring, the departure from 1 seen with the normal
variance parameters is simply due to the fact that the imputation method yields an unbiased
estimate of the variance whereas the MLE method yields a biased estimate of the variance, but
with smaller MSE. Moreover, observe how the ratio increases as the percentage of censoring
increases.

4. Environmental Application: Results

For each trace metal, a summary of the number of streams with levels observed, below the
corresponding LOD value, or missing is provided in Table 2. Note the high percentage of
nondetected values for Pb and Zn in comparison to Cu, Ca and Mg. Even more surprisingly,
notice that none of the data is completely missing!

A breakdown of the frequency of nondetects within each stream is provided in the footnote
of Table 2. While the majority of the observations are censored on two or fewer metals,
four streams do have four or five levels nondetected, requiring the multivariate MLE tool to
approximate four- and five-variate normal CDFs.

Using the original lognormal data as given and the log-transformed normal data, summary
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Table 1: Relative MSE of Estimators: Imputation to Mulitvariate MLE

Normal Lognormal

% Censored % Censored

Parameter 0 10 25 Parameter 0 10 25

µ1 1.00 1.61 2.63 η1 1.02 1.10 1.41
σ21 1.05 4.02 4.46 τ21 1.68 1.33 1.41
µ2 1.00 1.57 2.66 η2 1.02 1.09 1.41
σ22 1.08 4.08 4.64 τ22 1.73 1.61 1.36
µ3 1.00 1.64 2.67 η3 1.01 1.11 1.43
σ23 1.05 4.23 3.91 τ23 1.75 1.26 1.33
µ4 1.00 1.00 1.00 η4 1.02 1.00 1.00
σ24 1.08 1.05 1.08 τ24 1.69 1.41 1.37
ρ12 1.00 1.25 1.42 γ12 1.36 1.21 1.10
ρ13 1.00 1.16 1.00 γ13 1.40 1.16 0.76
ρ14 1.00 1.07 1.11 γ14 1.41 1.28 1.25
ρ23 1.00 1.17 1.07 γ23 1.40 1.17 0.80
ρ24 1.00 1.08 1.13 γ24 1.39 1.33 1.21
ρ34 1.00 1.04 0.91 γ34 1.47 1.22 0.95

In the simulation, the variances were set to 0.223 (equivalent to a lognor-
mal CV of 0.5) and the correlations were set to 0.7. Relative MSE values
greater than 1 indicate that the imputation method has higher MSE than
the multivariate MLE method.

Table 2: Frequency of Observed and Nondetected Values for Each Trace Metal

Metal N # Observed (%) LOD # Nondetected (%)

Cu 184 175 (95.1) 0.1 µg/L 9 (4.9)
Pb 184 40 (21.7) 0.1 µg/L 144 (78.3)
Zn 184 113 (61.4) 1.0 µg/L 71 (38.6)
Ca 184 179 (97.3) 0.5 mg/L 1 (0.5)

1.0 mg/L 4 (2.2)
Mg 184 166 (90.2) 0.5 mg/L 2 (1.1)

1.0 mg/L 16 (8.7)

This dataset contained no missing values. Note that 33 (17.9%) of the
streams had 0 nondetected trace metals, 72 (39.1%) had 1, 68 (37.0%) had
2, 7 (3.8%) had 3, 2 (1.1%) had 4, and 2 (1.1%) had 5 nondetected trace
metals.
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Table 3: Summary Statistics of the Raw (and Log-transformed) Data

Metal Cu (µg/L) Pb (µg/L) Zn (µg/L) Ca (mg/L) Mg (mg/L)

Total N 184 184 184 184 184

Observed N 175 40 113 179 166

Mean 0.58 0.27 3.45 12.41 4.18
(-0.79) (-1.51) (0.94) (1.99) (1.04)

Variance 0.28 0.04 14.23 199.51 21.90
(0.43) (0.34) (0.47) (1.03) (0.67)

95% CI 0.50, 0.66 0.20, 0.33 2.74, 4.15 10.33, 14.49 3.46, 4.89
(-0.88, -0.69) (-1.69, -1.32) (0.81, 1.07) (1.84, 2.14)) (0.92, 1.17)

Minimum – – – – –
(–) (–) (–) (–) (–)

Lower 0.27 – – 3.40 1.40
Quartile (-1.31) (–) (–) (1.22) (0.34)

Median 0.40 – 1.35 5.45 2.00
(-0.92) (–) (0.30) (1.70) (0.69)

Upper 0.66 – 2.52 14.35 4.55
Quartile (-0.42) (–) (0.92) (2.66) (1.52)

Maximum 4.00 1.01 29.00 64.90 35.00
(1.39) (0.01) (3.37) (4.17) (3.56)

All the observed and nondetected values–Total N–were used to obtain the five-number
summary statistics. Only the observed values–Observed N–were used to caculate means,
variances, and 95% CIs.

statistics of only the observed subset of the data are computed and reported in Table 3,
including the arithmetic means, variances and 95% confidence intervals about the means.

Additionally, the typical five-number-summary—minimum, lower quartile, median, upper
quartile, and maximum—of the entire data set—observed and nondetected—is provided in
Table 3 where applicable; e.g., since more than 75% of the Pb data is nondetected, we can
accurately report the maximum only. Non-applicable cells are indicated with a dash (–).

We used probability plots for both the original concentration values and the log-transformed
concentration values to assess the normality of the data. The probability plots corresponding
to Cu and Zn are provided in Figure 1. Notice how the log transformation normalizes the
data. Seeing as the given data for each metal are positively skewed, a log-transformation is
deemed appropriate to normalize the data by making it more symmetrical and homoscedastic.
Here we focus on estimating the parameters of the normal and lognormal distributions.

Assuming that the log-transformed data follow the multivariate normal distribution, we apply
the multivariate MLE tool to obtain the MLEs of the normal means, variances and correla-
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Figure 1: Censored Normal Probability Plots for Zinc (Zn) and Copper (Cu) Concentra-
tions: A. Log-Transformed Zn Concentrations, B. Log-Transformed Cu Concentrations, C.
Zn Concentrations, and D. Cu Concentrations

tions. The results are summarized below.

For all of the trace metals, the normal mean, variance and/or correlation parameter estimates
from the imputation and multivariate MLE methods are included in Table 4, along with
corresponding standard errors. Note the order of the trace metals is given by Y1 = ln (X1) =
Cu, Y2 = ln (X2) = Pb, Y3 = ln (X3) = Zn, Y4 = ln (X4) = Ca, and Y5 = ln (X5) = Mg.
Utilizing the invariance property of MLEs, we obtain the corresponding lognormal estimates
with appropriate standard errors.

Using the methodology introduced in section 2, we estimate the index function (3) using
the two sets of parameter estimates for comparative purposes. The results are summarized
in Table 5. Since the value of g (Y) must be positive, the confidence intervals about g (Y)
should be bounded below by 0. We report the negative values here, however, for illustrative
purposes.

5. Discussion

Importantly, we emphasize a major advantage that the multivariate approach has over the
imputation approach at this point. In considering a univariate approach, realize that any
observation with a completely missing value is thrown out of the analysis. In contrast, a
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Table 4: Normal and Lognormal Parameter Estimates (with Standard Errors)

Parameter
Impute Multi MLE

Parameter
Impute Multi MLE

(S.E.) (S.E.) (S.E.) (S.E.)

µ1
-0.893 -0.873

η1
0.556 0.554

(0.065) (0.056) (0.038) (0.035)

σ21
0.642 0.566

τ21
0.276 0.233

(0.082) (0.061) (0.083) (0.054)

µ2
-2.672 -3.274

η2
0.097 0.085

(0.047) (0.195) (0.009) (0.011)

σ22
0.450 1.619

τ22
0.017 0.029

(0.072) (0.385) (0.006) (0.018)

µ3
0.311 0.280

η3
2.309 2.322

(0.067) (0.088) (0.223) (0.232)

σ23
0.928 1.125

τ23
10.776 11.213

(0.082) (0.166) (3.933) (4.404)

µ4
1.911 1.914

η4
12.083 12.301

(0.080) (0.081) (1.088) (1.258)

σ24
1.210 1.191

τ24
197.855 346.592

(0.131) (0.129) (32.621) (121.397)

µ5
0.863 0.874

η5
3.813 3.729

(0.070) (0.070) (0.353) (0.313)

σ25
0.896 0.884

τ25
20.966 19.749

(0.101) (0.099) (6.247) (5.865)

ρ12
0.376 0.471

γ12
0.272 0.325

(0.063) (0.072) (0.063) (0.064)

ρ13
0.351 0.385

γ13
0.196 0.286

(0.071) (0.067) (0.070) (0.055)

ρ14
0.267 0.246

γ14
0.141 0.170

(0.086) (0.070) (0.094) (0.052)

ρ15
0.325 0.324

γ15
0.106 0.248

(0.068) (0.068) (0.066) (0.056)

ρ23
0.492 0.541

γ23
0.578 0.371

(0.064) (0.079) (0.133) (0.079)

ρ24
-0.249 -0.392

γ24
-0.179 -0.138

(0.074) (0.086) (0.032) (0.027)

ρ25
-0.254 -0.418

γ25
-0.171 -0.164

(0.064) (0.090) (0.031) (0.033)

ρ34
-0.130 -0.139

γ34
-0.103 -0.068

(0.082) (0.077) (0.049) (0.035)

ρ35
-0.028 -0.005

γ35
-0.034 -0.003

(0.085) (0.080) (0.057) (0.046)

ρ45
0.847 0.861

γ45
0.795 0.786

(0.023) (0.020) (0.040) (0.023)
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Table 5: Estimates of Index Function g (Y) with Approximate 95% Confidence Intervals

Impute Multi MLE

Estimated Mean 0.085 0.080
Estimated Variance 0.004 0.003
Standard Error 0.061 0.058
95% CI about g (Y) (-0.036,0.206) (-0.035,0.195)
95% CI about ln (g (Y)) (-∞,-1.581) (-∞,-1.632)

multivariate method utilizes the information provided by the other variables in the analysis
for that particular observation while taking the covariance structure into consideration. For
instance, suppose we want to estimate the population mean and standard deviation of a
function, denoted g (·), of our data. With complete data we could compute g (·) for each
observation and then directly find its sample mean and standard error. Conversely, g (·)
cannot be directly calculated for any observation that has levels of Cu, Pb, Zn, Ca, or Mg
completely missing or nondetected. With estimates of the population means, variances, and
covariances for all measures, we can indirectly estimate the mean and standard deviation of
the desired function.

The results reveal that the choice of method does not alter the conclusion for this particular
application. Regardless of the method for analysis, we conclude that there is sufficient evidence
to suggest that the collective concentration levels of the trace metals Cu, Pb and Zn in
freshwater streams across Virginia are significantly different from the reported worldwide
standard, while correcting for the water hardness as a function of Ca and Mg. In fact, it
appears that freshwater streams in Virginia are less contaminated with these trace metals
than other freshwater streams around the world. Note that for these data the LOD values are
relatively small as compared with the values of the observed data. We would have predicted
that imputation performs better than the MLE method. Consider comparing the LOD values
of each metal reported in Table 2 to the corresponding mean levels of the observed subset of
the data only in Table 3. In doing so, notice that for the metals Cu, Ca and Mg—which have
censoring percentages less than 10%—the LOD values are small relative to the corresponding
means. While the LOD values for Pb and Zn are also smaller than their respective means, this
difference is less dramatic than for Cu, Ca and Mg. Moreover, Pb and Zn have much higher
percentages of censored values (78% and 39%, respectively); and so, the means estimated
from the imputation method for Pb and Zn could have a larger bias, since the upper bound
on the bias is much higher.

As previously cited, statistical analyses used to evaluate the trace element chemistry of
groundwaters are typically complicated by the presence of many trace metals at concen-
trations below the LOD. Thus, Farnham et al. (2002) sought a new imputation approach
that utilizes the best value for substitution. In performing Monte Carlo simulation experi-
ments with a mixture multivariate model to test the performance of the substituted values 0,
LOD and LOD/2, Farnham et al. (2002) not surprisingly showed that substitution of LOD/2
yields superior results compared to 0 and LOD ; however, the performance of all substitution
methods declines when the percentage of values below the LOD exceeds 25%.
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6. Conclusion

The multivariate MLE tool is the optimal method in that it provided more accurate and
precise estimates; however, the computational time can be excessive when large numbers of
variables are being analyzed.

We have provided a tool that can be applied to a variety of environmental data to obtain the
MLEs of multivariate normal parameters in the presence of left-censored and missing data.
Estimation of the parameters of left-censored multivariate normal data does not, however,
end with the proposed tool. Rather, this tool simply opens the door to new issues to ex-
plore. We assume that the variables are missing completely at random (MCAR), but can
this approach be adapted for nonignorable missing data? For instance, values may be missing
due to some specific problems existing in the assay itself that prohibit one from obtaining
an observed value, such as some external contaminant or mechanical malfunction in the in-
strument. We resorted to Legendre-Gauss quadrature in estimating the multivariate normal
CDF with our multivariate MLE tool. Alternate methods may show improved efficiency in
comparison. Additionally, one could consider mixtures of distributions as opposed to only a
single multivariate normal for the entire set of data.

In summary, we proposed a method that provides the MLEs of mean and unstructured
(co)variance parameters corresponding to a multivariate (log)normal distribution in the pres-
ence of left-censored and missing values. The resulting estimates may be used to approximate
and make inferences about one or more composite functions of the measures.
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