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Maŕıa Pilar Fŕıas
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Abstract

Filtering and parameter estimation are addressed in the context of spatiotemporal
strong dependence processes. A functional parametric observation model is fitted to the
spectral sample information. Specifically, the class of strong dependence spatiotemporal
random fields studied in Fŕıas, Ruiz-Medina, Alonso, and Angulo (2006a), Fŕıas, Ruiz-
Medina, Alonso, and Angulo (2008), Fŕıas, Ruiz-Medina, Alonso, and Angulo (2009) is
considered. Large dimensional spectral data sets, displaying high local singularity, are
then processed in this functional setting. Thresholding techniques are first applied for
removing noise generated from measurement spectrometer device. Spatiotemporal long-
range dependence model fitting is then achieved by applying linear regression in the log-
wavelet domain. The performance of the estimation algorithms proposed is illustrated
from simulated data.

Keywords: Fractal spectral processes, long-range dependence parameters, spatiotemporal para-
metric models, wavelet thresholded transform.

1. Introduction

Remote Sensing of Environment constitutes a crucial task in assessment of urban heat island
effect, surface soil water content, green vegetation, climate change, etc. (see Byambakhuu,
Sugita, and Matsushima (2010); Elvidge, Chen, and Groeneveld (1993); Gallo, McNab, Karl,
Brown, Hood, and Tarpley (1993); Price (1990), among others). Imaging spectrometry is
one of the most common tools used for capturing sample information from the earth (see, for
example, Bell, B.A., and Martini (2010); Clark and Roush (1984); Goetz, Vane, Solomon, and
Rock (1985)). This paper contributes to the analysis of spatiotemporal data in this context,
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since functional data are collected in the spectral domain, focusing our study to the case of
strong correlations in space and time. That is, the collected functional spectral data displays
a singularity at the origin (see, Leonenko (1999) and Fŕıas et al. (2009)), considering the
statistical functional framework (see, Delicado, Giraldo, Comas, and Mateu (2009)).

In the spatial statistical analysis of high dimensional data sets, for example, in the inves-
tigation of soil properties, air ozone concentration, velocity turbulence fields, ocean surface
temperature profiles from deep ocean weather stations, often strong correlations are detected
in time and or space (see, for example, Akkaya and Yücemen (2002), Anh, Lam, Leung,
and Tieng (2000), Marguerit, Schertzed, Schmitt, and Lovenjoy (1998)). For the analysis
of high-dimensional data usually dimension reduction techniques are applied. In the strong-
dependence case these techniques must be combined with the truncation of the heavy tails
of the underlying covariance model. In particular, this fact corresponds to the truncation
of the singularity at zero of the associated spectral density, which provides information on
the behavior of the covariance function at large lags. The hyperbolic rate displayed by the
decay velocity of the covariance function of strong-correlated random fields induces serious
difficulties in the implementation of inference tools (see, Fŕıas et al. (2009)). This fact hinders
the development of functional estimation algorithms, since several model selection and matrix
computational problems arise. Some attempts have been made in the parametric and semi-
parametric spatial and spatiotemporal estimation contexts (see Bardet, Lang, Oppenheim,
Philippe, Stove, and Taqqu (2003), Fŕıas et al. (2006a), Fŕıas et al. (2008), Fŕıas et al. (2009),
among others). A complete overview on statistical inference tools for random fields with sin-
gular spectra can be found in Leonenko (1999) (see also Kelbert, Leonenko, and Ruiz-Medina
(2005)).

The measurement noise associated with devices, like spectrometers, increases the high local
singular nature of spectral data, whose covariance function is heavy-tailed. This fact moti-
vates the methodology proposed in this paper for addressing the problem of spatiotemporal
long-range dependence model fitting from noisily large-dimensional spectral data. Specifi-
cally, the wavelet domain is first considered to transform the large-dimensional spectral data
into functional data. Thresholding techniques are applied to the empirical wavelet coefficients
for removing the observation noise (see, for example, Donoho and Johnstone (1995)). Lin-
ear regression estimates are then computed from the log-thresholded wavelet transform to
approximate the temporal and spatial long-range dependence parameters.

The estimation approach presented in this paper can also be applied to the functional non-
parametric regression context in the case where the functional regressors display strong cor-
relation (see Ferraty, Goia, and Vieu (2002), under the weak-dependence modeling, and Ben-
henni, Hedli-Griche, Rachdia, and Vieu (2008), under long memory conditions). In the Geo-
statistical framework, spatiotemporal kriging and functional parameter estimation, under
strong dependence modeling, can also be addressed from the application of the estimation
methodology formulated here. In this context, we mention the papers by Delicado et al.
(2009), Baladandayuthapani, Mallick, Hong, Lupton, Turner, and Caroll (2008) and Basse,
Diop, and Dabo-Niang (2008) on statistical analysis of functional data displaying spatial
interaction (see also Ruiz-Medina (2011), in the spatial autoregressive functional context).

The outline of the paper is the following. The spatiotemporal strong dependence functional
model, assumed in the development of the results presented in this paper, is introduced in
Section 2. The filtering and parameter estimation methodology proposed are described in
Section 3. A simulation study is carried out in Section 4 for illustration of the wavelet-based
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filtering and long-range dependence model fitting approach presented in the spectral domain.
A real-data example is considered in Section 5 to illustrate the methodology proposed. Con-
cluding remarks are given in Section 6.

2. Statistical functional model

Let us consider the following functional spectral observation model:

Z(ω,λ) = X̂(ω,λ) + ε(ω,λ), (ω,λ) ∈ Rd+1.

Here, ε denotes functional spectral Gaussian observation noise, that is, ε ∈ H, E[ε] ≡ 0, and

E[ε⊗ ε] = σ2εI,

where I is the identity operator on Rd+1. Process ε is also assumed to be uncorrelated with X̂.
By H we denote a separable Hilbert space of spatiotemporal functions, assumed to be included
in L2(Rd+1), the space of square integrable function on Rd+1. The spectral functional random
variable X̂ ∈ H is defined from the realizations of the spectral process associated with a
Gaussian long-range dependence spatiotemporal random field X given by:

X(t, z) =
m.s

∫
Rd+1

r(t− s, z− y)Y (s,y)dsdy, (1)

where

r(t, z) = |t|−1+ν
d∏
i=1

|zi|−1+βi , (2)

with (ν, β1, . . . , βd) ∈ (0, 1/2)d+1, t ∈ R, z ∈ Rd. Note that, kernel r displays an anisotropic
heavy-tail behavior, inducing a local multi-self-similar behavior of our functional spectral
data in a neighborhood of zero-frequency. The input spatiotemporal random field Y of model
(1) satisfies the following conditions, needed for the pointwise definition of X (see Leonenko
(1999), Adler (1981) and Ruiz-Medina, Ángulo, and Anh (2003)):

Condition 1.
|fY (ω,λ)| −→ C1,

when ω −→ 0 and λ = (λ1, . . . , λd), λi −→ 0, for i = 1, . . . , d, with C1 being a positive
constant and fY the spectral density of the spatiotemporal process Y .

Condition 2.
|fY (ω,λ)|

(1 + |(ω,λ)|2)−ν̃−
∑d

i=1 β̃i
−→ C2,

when ω −→ ∞ and λi −→ ∞, for i = 1, . . . , d, and for λ = (λ1, . . . , λd), where C2 is a
positive constant, (ν̃, β̃1, . . . , β̃d) ∈ (1/2, 1)d+1, and fY denotes, as before, the spectral
density of the input spatiotemporal process Y .

Remark 1 Note that Condition 1 means that the integrability order of the spectral density
of the spatiotemporal process X at zero frequency depends only of the behavior of the Fourier
transform r̂(ω,λ) = |ω|−ν

∏d
i=1 |λi|−βi of kernel r, at a neighborhood of zero-frequency. This
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behavior is characterized in terms of the range of the parameter vector (ν, β1, . . . , βd) (which
determines the integrability of the spectral density fX at the origin). Specifically, the integra-
bility at zero of fX holds for (ν, β1, . . . , βd) ∈ (0, 1/2)d+1. On the other hand, the asymptotic
order at infinity of the spectral density fX of X depends on the considered ranges for vectors
(ν, β1, . . . , βd) and (ν̃, β̃1, . . . , β̃d). In this case, for ν̃ > (1/2) − ν and β̃i > (1/2) − βi, for
i = 1, . . . , d, fX is absolutely integrable at infinity.

3. Estimation methodology

As commented, from Condition 1, the spectral density fX of spatiotemporal process X dis-
plays the following asymptotic local fractal behavior, when |ω| → 0, and |λi| → 0, i = 1, . . . , d,
(see, Leonenko (1999)),

fX(ω,λ) ∼ C1|ω|−2νΠd
i=1|λi|−2βi , ν ∈ (0, 1/2), βi ∈ (0, 1/2), i = 1, . . . , d. (3)

In the implementation of the functional estimation algorithms formulated below, compactly
supported orthonormal wavelet bases are considered. The multiresolution analysis of L2(Rd+1)
is performed in terms of the tensorial product of d+ 1 one-dimensional orthonormal wavelet
bases (see, Meyer (1992)). The one-dimensional wavelet transforms are defined in terms of a
scaling basis {φk : k ∈ Γ0 ⊂ Z} of a coarsest scale space V0, and a sequence of wavelet bases
{ψj:k : k ∈ Λj ⊂ Z, j ≥ 0 } of the detail space sequence {Wj , j ≥ 0}. The index sets Γ0

and Λj , for j ≥ 0, are constituted by the integer values k defining the needed translations
for covering, at different resolution levels, the one-dimensional zero-frequency neighborhoods
considered at the temporal, and at each one of the main spatial directions, in the estimation
algorithms described below. Suitable examples of such bases can be constructed from the
tensorial product of Haar and Daubechies systems.

To remove the local variability represented by parameter σ2ε , due to the measurement noise,
universal wavelet thresholding is applied to the empirical wavelet spectral coefficients. That
is, we consider the universal threshold UT defined by

UT = σε
√

2 log n,

where n denotes the sample size. Here, we have chosen UT, since the noise ε, resulting
from the spectral instrument error, is assumed to be Gaussian distributed (see Donoho and
Johnstone (1995)). Alternative thresholding rules must be considered for going beyond the
Gaussian assumption in order to preserve signal energy, e.g. Lorenz Thresholding (see Vi-
dakovic (1999)).

Under Conditions 1 and 2, the following asymptotic identities are obtained for the wavelet

transform of the square-root, f
1/2
X , of the spectral density fX , when R→ 0,

f1j:k =

∫
[−R,R]

f
1/2
Y (ω,λ0)|ω|−ν

d∏
i=1

|λ0i |−βiψj:k(ω)dω ∼ 2−j(−ν+1/2)C(ψ,λ0), (4)

for a fixed spatial frequency value λ0 in a neighborhood of the spatial zero frequency, where
[−R,R] denotes a one-dimensional interval of length 2R containing the point zero, and
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C(ψ,λ0) is a constant depending on the wavelet basis chosen and on the fixed spatial fre-
quency value λ0. Specifically, under condition 1,

C(ψ,λ0) ∼ C1

d∏
i=1

|λ0i |
∫
[−R,R]

|s|−νψ(s− k)ds.

Here, for k ∈ Λj and j ≥ 0, f1j:k denotes the one-dimensional temporal wavelet coefficient of

the square-root f
1/2
X of the spectral density fX of our random field of interest X, evaluated

at λ0, with respect to the element ψj:k of the wavelet basis selected. Similarly, when R→ 0,
we have

f1+ij:k =

∫
[−R,R]

f
1/2
Y (ω0, λ01, . . . , λi, . . . , λ

0
d)

×|ω0|−ν |λ01|−β1 · · · |λi|−βi · · · |λ0d|−βdψj:k(λi)dλi
∼ 2−j(−βi+1/2)C(ψ, ω0, . . . , λ0i−1, λ

0
i+1, . . . , λ

0
d), i = 1, . . . , d, (5)

where, as before, C(ψ, ω0, λ1 . . . , λ
0
i−1, λ

0
i+1, . . . , λ

0
d) is a constant depending on the wavelet

basis chosen, and on the fixed frequency values ω0, . . . , λ0i−1, λ
0
i+1, . . . , λ

0
d in a neighborhood

of zero frequency. For instance, under Condition 1,

C(ψ, ω0, . . . , λ0i−1, λ
0
i+1, . . . , λ

0
d) ∼ C1|ω0|−ν |λ01|−β1 · · · |λ0i−1|−βi−1 |λ0i+1|−βi+1 · · · |λ0d|−βd

×
∫
[−R,R]

|s|−βiψ(s− k)ds.

Here, for k ∈ Λj , j ≥ 0, and i = 1, . . . , d, f1+ij:k denotes, as in the temporal case, the one-
dimensional spatial wavelet coefficient of the square-root

f
1/2
X (ω0, . . . , λ0i−1, ·, λ0i+1, . . . , λ

0
d) = f

1/2
Y (ω0, . . . , λ0i−1, ·, λ0i+1, . . . , λ

0
d)

×|ω0|−ν
d∏

j=1,j 6=i
|λ0j |−βj | · |−βi (6)

of the spectral density fX of our random field of interest X, with respect to the element ψj:k
of the wavelet basis selected. Note that, under Conditions 1 and 2, fY admits a spectral

factorization, that is, there exists f
1/2
Y satisfying fY = f

1/2
Y f

1/2
Y , with f

1/2
Y denoting the

complex conjugate. This fact allows the definition, as in equation (6), of the square-root f
1/2
X

of the spectral density of process X, in terms of the square-root f
1/2
Y of fY , as well as in terms

of the Fourier transform r̂ of kernel r. Thus, equations (4)-(5) can be explicitly computed,
and the temporal memory parameter ν and spatial dependence parameters βi, i = 1, . . . , d,
can be estimated from the following equations:

log2 f
1
j:k = −j(−ν + 1/2) + log2C(ψ,λ0), (7)

log2 f
1+i
j:k = −j(−βi + 1/2) + log2C(ψ, ω0, . . . , λ0i−1, λ

0
i+1, . . . , λ

0
d), (8)

for i = 1, . . . , d.

The following functional filtering and parameter estimation algorithms are proposed.

Algorithm 1 :
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Step 1: Define the zero frequency neighborhood sequences: In time

[−Rj , Rj ]× [−λ0,l,λ0,l]d, j ∈ N,

for each l = 1, . . . , L0, and {λ0,l}L0
l=1 being a set of fixed spatial frequency vectors with

decreasing positive real components, and Rj → 0, as j →∞. Define also, in the space,
for each i = 1, . . . , d, the sequence

[−ω0,l, ω0,l]× · · · × [−λ0,li−1, λ
0,l
i−1]× [−Rj , Rj ]× [−λ0,li+1, λ

0,l
i+1]×, · · · × [−λ0,ld , λ

0,l
d ],

for j ∈ N, and with {ω0,l}L0
l=1 {λ

0,l
m }L0

l=1, for m = 1, . . . , d, m 6= i, being decreasing
positive numbers sets in the spatial frequency domain, and, as before, Rj → 0, as
j → ∞. These sequences of frequency sets provide the supports where the spectral
process X̂ is evaluated.

Step 2: For each n ∈ N, compute the average on l = 1, . . . , L0, of the temporal sample spectral
curves, which represent the evaluation of process X̂ for ω ∈ [−Rj , Rj ], for a fixed ξ0,l ∈
[−λ0,l,λ0,l]d, and the average of the spatial sample spectral curves, which represent the
evaluation of process X̂ for λi ∈ [−Rj , Rj ], for each i = 1, . . . , d, and considering fixed

τ0,l ∈ [−ω0,l, ω0,l], ξ0,lm ∈ [−λ0,lm , λ0,lm ], m = 1, . . . , d, m 6= i, and l = 1, . . . , L0.

Step 3: Apply the one-dimensional wavelet transform to each element of the averaged temporal
and spatial spectral curve sequence obtained in Step 2.

Step 4: Universal wavelet threshold is considered for removing noise in the wavelet coefficients
computed in Step 3.

Step 5: At each zero frequency neighborhood, derive from equations (7) and (8), applying linear
regression, estimates ν̂ and β̂i, i = 1, . . . , d, of the temporal and spatial long-range
dependence parameters.

Step 6: The arithmetic mean of the d+ 1 parameter estimate sequences derived in the previous
step is computed.

Algorithm 2 :

Step 1: It is given as in Algorithm 1.

Step 2: For each j ∈ N, and for each l = 1, . . . , L0, compute the wavelet transform of the
temporal sample spectral curves which represent the evaluation of process X̂ for ω ∈
[−Rj , Rj ], and for fixed ξ0,l ∈ [−λ0,l,λ0,l]d, and of the spatial sample spectral curves,
which represent the evaluation of process X̂ for λi ∈ [−Rj , Rj ], for each i = 1, . . . , d,

and for fixed τ0,l ∈ [−ω0,l, ω0,l], and ξ0,lm ∈ [−λ0,lm , λ0,lm ], m = 1, . . . , d, m 6= i, and
l = 1, . . . , L0.

Step 3: It coincides with Step 4 of Algorithm 1.

Step 4: It coincides with Step 5 of Algorithm 1.

Step 5: At each element of the zero frequency neighborhood sequences, average the temporal
and spatial long-range dependence parameter estimates obtained in Step 4.
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Step 6: It is defined as in Algorithm 1.

A third estimation algorithm, Algorithm 3, is defined considering in Algorithm 2 a smoothing
version of the wavelet transform, with respect to the translation parameter at each resolution
level. Finally, the formulation of Algorithm 1 in terms of a smoothing version, over the
translation parameter, of the wavelet transform leads to Algorithm 4. As commented, in all
the cases, universal wavelet threshold is considered, for removing the observation noise from
the functional spectral data (see, for example, Vidakovic (1999)).

4. Simulations

A simulation study is developed to show the performance of the functional estimation algo-
rithms proposed. Two spatiotemporal Gaussian stationary models, defining processes X1 and
X2, are considered, having the following spectral densities:

fX1(ω, λ1, λ2) =

[
1

(1 + |ω|2)α1

] [
1

(1 + |λ1|2)α2

] [
1

(1 + |λ2|2)α3

]
× |ω|−2ν |λ1|−2β1 |λ2|−2β2 , (9)

with αi ∈ (1/2,∞), i = 1, 2, 3, and

fX2(ω, λ1, λ2) =

[
1

1 + |ω|2α1

] [
1

1 + |λ1|2α2

] [
1

1 + |λ2|2α3

]
× |ω|−2ν |λ1|−2β1 |λ2|−2β2 , (10)

with αi ∈ (1/2,∞), i = 1, 2, 3, respectively. Note that, for αi ∈ (1/2, 3/2), the above Gaussian
models also display anisotropic fractality. Functional spectral data are constructed from
256 × 256 × 256 frequency points belonging to the interval [−127.5 ∗ 10−8, 127.5 ∗ 10−8],
that is, (ω, λ1, λ2) ∈ [−127.5 ∗ 10−8, 127.5 ∗ 10−8]3, with discretization step size 10−8. The
simulation study is developed considering two structural parameter scenarios, corresponding
to heavy and slight spectral singularity, in the range of strong dependence for the two-above
introduced spectral models. In relation to the observation noise, we consider the parameter
values σε = 2∗102 and σε = 0.05∗102, which keep a reasonable signal to noise ratio, according
to the truncated spectral density values at a zero-frequency spectral neighborhood. That is,
we consider the cases:

Case I: ν = 0.375, β1 = 0.385, β2 = 0.395, α1 = 0.7, α2 = 0.8, α3 = 0.9,
Case II: ν = 0.185, β1 = 0.195, β2 = 0.205, α1 = 0.7, α2 = 0.8, α3 = 0.9.

From equations (7) and (8) the following estimates can be derived by performing linear re-
gression in the spectral log-wavelet domain:

ν̂ = −θ̂d+1 +
1

2
, β̂i = −θ̂i +

1

2
, i = 1, . . . , d,

where for i = 1, . . . , d + 1, θ̂i is computed by applying linear regression. Functional estima-
tion algorithms 1, 2, 3 and 4 are implemented from the following spectral curve sample sizes
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n = 16, 36, 100, 400, 900, 1600, 2500, 3600, 4900, 6400, at temporal and spatial directions. Fig-
ures 1-10 display the long-range dependence parameter estimate sequences, and the estimation
of their standard deviation after applying Algorithms 1-4, as well as alternative estimation
methods, the partially-integrated method and the marginal-integrated method, previously
proposed in Fŕıas, Ruiz-Medina, Alonso, and Angulo (2006) and Fŕıas et al. (2009), respec-
tively. Specifically, Case I in model (9), with σε2 = 2 ∗ 102, is displayed in Figures 1 and 2,
where ν̂ (red), β̂1 (green) and β̂2 (blue) values are showed at the top, and standard deviations
at the bottom. Dotted line represents the true parameter values. Continuous line provides
the results on estimate value sequences after applying hard threholding, i.e., after filtering
the spectral data. Dashed line represents the parameter estimate values without previous
thresholding.

Figures 3 and 4 show the results obtained for case II and model (9), with σε2 = 2 ∗ 102. The
same colors and lines are established for representing estimate value sequences and standard
deviations without and with hard thresholding, as well as true parameter values. Figures 5-8
provide the estimation results for: Case I and model (10), with σε2 = 2 ∗ 102; Case II and
model (10), with σε2 = 2∗102. Finally, 9-10 show Case I and model (10) with σε2 = 0.05∗102,
and Case II and model (9) with σε2 = 0.05 ∗ 102.

The results displayed show a better performance of Algorithms 1 and 2 than Algorithms 3
and 4 for high local order of singularity of the spectral density. Additionally, thresholding
improves the parameter estimation results in most of the cases considered with Algorithms 1
and 2. Note that, Algorithm 3 and 4 are not compatible with hard-thresholding. They provide
better results when the lowest levels of structural and noise local variability are considered.
Thus, Algorithms 1 and 2 outperform Algorithms 3 and 4 in the higher local singular cases,
and the discrimination between signal and noisy energies, achieved by applying thresholding,
improves the parameter estimation results, for a suitable signal to noise ratio. In comparison
with the previous estimation methodologies implemented in Fŕıas et al. (2006) and Fŕıas
et al. (2009), the partially-integrated method and the marginal-integrated method, a better
performance is obtained with Algorithms 1 and 2, when Case I is considered, in relation to
the accuracy of the estimations. It should be noted that estimators with Algorithms 1 and 2
display similar empirical variability properties to those ones presented by previously designed
methods in Fŕıas et al. (2006) and Fŕıas et al. (2009).

5. Application

In this section, the performance of the estimation algorithms proposed is illustrated with a
real-data example. The data set studied consists of mean annual daily ocean surface tem-
perature profiles with data size equal to 250 observations, collected from weather stations
in the Hawaii Ocean and the West Coast of the United States (latitude-longitude interval
[21.34, 49.98]× [−158.361,−120, 90]). In particular, the year 2000 is analyzed at 256 weather
stations, according to the availability of the public oceanographic bio-optical database, The
Worldwide Ocean Optics Database (WOOD), from which data are collected. The fast Fourier
transform is applied to mean annual daily temperature profiles to implement Steps 1-6 of
Algorithms 1-4, in terms of the corresponding temporal and spatial spectral curves. Haar
wavelet transform is applied in all the cases. Figure 11 shows the long-range dependence
parameter estimate sequences, and the estimation of their standard deviations after applying
Algorithms 1-4. The spectral curve sample sizes used at temporal and spatial directions are
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Figure 1: ν̂, β̂1, and β̂2 values (top) and standard deviations (bottom), partially-integrated
method (left), marginal-integrated method (left-medium), algorithm 1 (right-medium), algo-
rithm 2 (right), for case I and for model (9) with σε2 = 2 ∗ 102. The values on horizontal axis
represent the spectral curve sample sizes considered.

σ̂(ν̂) Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

n = 4 0.0134 0.0155 0.3253 0.3195
n = 9 0.0113 0.0120 0.3406 0.3313
n = 16 0.0109 0.0113 0.2951 0.5369
n = 25 0.0119 0.0122 0.2876 0.2847
n = 36 0.0125 0.0126 0.2556 0.2551
n = 49 0.0123 0.0125 0.2431 0.2462
n = 64 0.0110 0.0111 0.2127 0.2198
n = 81 0.0200 0.0201 0.2014 0.2304
n = 100 0.0182 0.0182 0.1886 0.2125
n = 121 0.0167 0.0168 0.1783 0.1986

Table 1: Standard deviation of ν̂ values.

n = 4, 9, 16, 25, 36, 49, 64, 81, 100, 121. Standard deviations of ν̂, β̂1 and β̂2 are also displayed
in Tables 1-3. As showed in the simulation study, Algorithms 1 and 2 are more efficient than
Algorithms 3 and 4. Note that the spatial strong dependence is induced by the high concen-
tration level of weather stations. Since this concentration is similar in terms of longitude and
latitude magnitudes, the two spatial long-range dependence parameters are very close. This
fact is reflected in the results displayed in Figure 11.

For comparative purposes, considering the same functional data sets, the previous spectral-
based estimation methodologies proposed in Fŕıas et al. (2006) and Fŕıas et al. (2009) are also
applied for estimation of the temporal and spatial long-range dependence parameters in the
spectral domain (see Figure 12). As in the simulation study, it can be appreciated that similar
empirical variability properties are displayed by the estimates computed with the previous
spectral methods in Fŕıas et al. (2006) and Fŕıas et al. (2009), and with Algorithms 1 and
2 in the spectral- wavelet domain. However, although similar estimates are obtained, with
both methodologies, for the spatial long-range dependence parameters, bigger differences are
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σ̂(β̂1) Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

n = 4 0.0399 0.0299 0.0020 0.0019
n = 9 0.0359 0.0265 0.0033 0.0032
n = 16 0.0326 0.0226 0.0029 0.0029
n = 25 0.0268 0.0198 0.0032 0.0032
n = 36 0.0224 0.0174 0.0068 0.0067
n = 49 0.0207 0.0165 0.0095 0.0094
n = 64 0.0175 0.0143 0.0123 0.0123
n = 81 0.0164 0.0133 0.0113 0.0112
n = 100 0.0151 0.0123 0.0103 0.0103
n = 121 0.0142 0.0115 0.0095 0.0095

Table 2: Standard deviation of β̂1 values.

σ̂(β̂2) Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

n = 4 0.0087 0.0089 0.0050 0.0054
n = 9 0.0080 0.0077 0.0042 0.0048
n = 16 0.0066 0.0066 0.0038 0.0044
n = 25 0.0059 0.0060 0.0045 0.0045
n = 36 0.0054 0.0055 0.0048 0.0048
n = 49 0.0053 0.0052 0.0050 0.0050
n = 64 0.0048 0.0047 0.0047 0.0046
n = 81 0.0045 0.0044 0.0046 0.0046
n = 100 0.0041 0.0041 0.0046 0.0048
n = 121 0.0038 0.0038 0.0044 0.0045

Table 3: Standard deviation of β̂2 values.
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Figure 2: ν̂, β̂1, and β̂2 values (top) and standard deviations (bottom), partially-integrated
method (left), marginal-integrated method (left-medium), algorithm 3 (right-medium), algo-
rithm 4 (right), for case I and for model (9) with σε2 = 2 ∗ 102. The values on horizontal axis
represent the spectral curve sample sizes considered.

appreciated in the temporal long-range dependence parameter estimates. After computing
the corresponding least-squares plug-in estimators of the values of the original process, it is
observed a better performance of the plug-in predictor based on the parameter estimation in
the spectral-wavelet domain. Note that the order of magnitude of the absolute error is less
than 0.1 with the proposed methodology, while with the previous spectral methods in Fŕıas
et al. (2006) and Fŕıas et al. (2009) is always larger than 0.1. Therefore, we conclude, as in
the simulation study, that for strong-dependence parameter values close to Case I, a better
performance is obtained with the proposed methodology in the spectral-wavelet domain, in
terms of Algorithms 1 and 2.

6. Final comments

Long-range dependence is a key feature in the analysis of complex systems which can be
equivalently studied, thanks to Tauberian-type theorems (see, for example, Leonenko (1999)),
in terms of the local singularity level, in a neighborhood of the zero frequency, of the spectral
density. This fact motivates the parameter estimation methodology proposed in this paper, in
terms of compactly supported wavelet functions. The estimation algorithms proposed combine
thresholding in the wavelet domain with linear regression from the log-thresholded-wavelet
transform of the spectral data. This double filtering is advisable in the cases showed in the
simulation study, thus, for processing spectral data displaying high local singularity, due to the
heavy tail behavior of the covariance function, and to the local variability of the observation
noise. As main conclusion conducted from the paper, we then have that Algorithms 1 and
2 are suitable for processing high local structural spectral variability, corresponding to the
range (0.3, 0.5), after applying hard-thresholding in the presence of measurement noise.

On the other hand, the consistency of the wavelet-spectral based estimators formulated for
the approximation of the long-range dependence parameters follows from the consistency of
the wavelet periodogram, computed from the functional spectral data (see Fŕıas and Ruiz-
Medina (2012)). Thus, the efficiency and consistency of these estimators, with a suitable
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Figure 3: ν̂, β̂1, and β̂2 values (top) and standard deviations (bottom), partially-integrated
method (left), marginal-integrated method (left-medium) algorithm 1 (right-medium), algo-
rithm 2 (right), for case II and for model (9) with σε2 = 2 ∗ 102. The values on horizontal
axis represent the spectral curve sample sizes considered.

scaling, ensure a good performance when the functional sample size increases.
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method (left), marginal-integrated method (left-medium), algorithm 1 (right-medium), algo-
rithm 2 (right), for case I and for model (10) with σε2 = 2 ∗ 102. The values on horizontal
axis represent the spectral curve sample sizes considered.
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Figure 6: ν̂, β̂1, and β̂2 values (top) and standard deviations (bottom), partially-integrated
method (left), marginal-integrated method (left-medium), algorithm 3 (right-medium), algo-
rithm 4 (right), for case I and for model (10) with σε2 = 2 ∗ 102. The values on horizontal
axis represent the spectral curve sample sizes considered.
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Figure 7: ν̂, β̂1, and β̂2 values (top) and standard deviations (bottom) partially-integrated
method (left), marginal-integrated method (left-medium), algorithm 1 (right-medium), algo-
rithm 2 (right), for case II and for model (10) with σε2 = 2 ∗ 102. The values on horizontal
axis represent the spectral curve sample sizes considered.
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Figure 8: ν̂, β̂1, and β̂2 values (top) and standard deviations (bottom) partially-integrated
method (left), marginal-integrated method (left-medium), algorithm 3 (right-medium), algo-
rithm 4 (right), for case II and for model (10) with σε2 = 2 ∗ 102. The values on horizontal
axis represent the spectral curve sample sizes considered.
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Figure 9: ν̂, β̂1, and β̂2 values (top) and standard deviations (bottom), algorithm 1 (left),
algorithm 2 (left-medium,), algorithm 3 (right-medium), algorithm 4 (right), for case I and
for model (10) with σε2 = 0.05 ∗ 102. The values on horizontal axis represent the spectral
curve sample sizes considered.
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Figure 10: ν̂, β̂1, and β̂2 values (top) and standard deviations (bottom) algorithm 1 (left),
algorithm 2 (left-medium,), algorithm 3 (right-medium), algorithm 4 (right), for case II and
for model (9) with σε2 = 0.05∗102. The values on horizontal axis represent the spectral curve
sample sizes considered.
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Figure 1: ν̂ (red), β̂1, (green) and β̂2 (blue) values (top) and standard deviations (bottom), algorithm 1 (left), algorithm
2 (left-medium), algorithm 3 (right-medium), algorithm 4 (right). The values on horizontal axis represent the spectral
curve sample sizes considered.

Figure 11: ν̂ (red), β̂1, (green) and β̂2 (blue) values (top) and standard deviations (bottom),
algorithm 1 (left), algorithm 2 (left-medium), algorithm 3 (right-medium), algorithm 4 (right).
The values on horizontal axis represent the spectral curve sample sizes considered.

18 Functional spatiotemporal strong-dependence models fitting

4 9 16 25 36 49 64 81 100 121
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 9 16 25 36 49 64 81 100 121
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 9 16 25 36 49 64 81 100 121
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 9 16 25 36 49 64 81 100 121
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 9 16 25 36 49 64 81 100 121
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 9 16 25 36 49 64 81 100 121
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 9 16 25 36 49 64 81 100 121
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

4 9 16 25 36 49 64 81 100 121
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 1: ν̂ (red), β̂1, (green) and β̂2 (blue) values (top) and standard deviations (bottom), algorithm 1 (left), algorithm
2 (left-medium), algorithm 3 (right-medium), algorithm 4 (right). The values on horizontal axis represent the spectral
curve sample sizes considered.

Figure 11: ν̂ (red), β̂1, (green) and β̂2 (blue) values (top) and standard deviations (bottom),
algorithm 1 (left), algorithm 2 (left-medium), algorithm 3 (right-medium), algorithm 4 (right).
The values on horizontal axis represent the spectral curve sample sizes considered.
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Figure 1: ν̂ (red), β̂1 (green) and β̂2 (blue) values (top) and standard deviations (bottom) partially-integrated method
(left), marginal-integrated method (right).

Figure 12: ν̂ (red), β̂1 (green) and β̂2 (blue) values (top) and standard deviations (bottom)
partially-integrated method (left), marginal-integrated method (right).
Figure 12: ν̂ (red), β̂1 (green) and β̂2 (blue) values (top) and standard deviations method
(left), marginal-integrated method (right).
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