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Abstract

We propose a model to describe the mean function as well as the spatio-temporal
covariance structure of 15 years of both maximum and minimum daily temperature data
from 190 stations throughout the region of Catalonia (Spain), with daily data covering
the period 1994-2008. Our aim is threefold: (a) estimation of the long-term trend of
maximum and minimum temperatures; (b) assessing the spatial and temporal variability
of temperatures, and (c) interpolation of the spatial temperatures at any given time.

Long-term trend, annual harmonics and winds were considered as explanatory vari-
ables of the mean function. The parameters associated with these variables were allowed
to vary between stations and within each year. We controlled temporal autocorrelation
by means of ARMA models. For the spatial covariance structure we used the Matérn
family of covariance functions and a nugget term. Spatio-temporal models were built as
Bayesian hierarchical models with two stages following the integrated nested place Laplace
approximation (INLA) for Bayesian inference. For the final model estimation we used a
two-stage approach, in which we first assumed the stations were spatially independent,
and then we modeled the spatio-temporal covariance using the interim posterior from the
residuals of the model in the first-stage as prior distributions of replications of a spatial
process. We allowed all spatial parameters to also vary with time.

Keywords: Average temperature; Integrated nested Laplace approximation; Spatial variability;
Spatio-temporal covariance; Two-stage Bayesian approach.

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC), in its fourth and final evaluation
report (IPCC, 2007a), pointed out several long-term changes in climate at global and regional
scales. These changes have a higher probability of being associated with an anthropic activity.

Climate change refers to any significant change in measures of climate, such as temperature,
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precipitation and other weather patterns, that lasts for decades or longer. Consensus exists
among scientists that the world’s climate is changing, with more precipitation and weather
extremes. Potential effects of this climate change are likely to include stronger and longer
heat waves, more frequent heavy precipitation events, extreme weather events and increased
air pollution (IWGCCH, 2010).

During the last years, efforts have focused on addressing how environmental changes can af-
fect people’s health. The more direct health effects of climate change can include injuries and
illnesses from severe weather and heat exposure, increases in disease caused by allergies, respi-
ratory problems, illnesses carried by insects or water and threats to the safety and availability
of food and water supplies (IPCC, 2007b; IWGCCH, 2010).

Throughout the world, the prevalence of some diseases and other threats to human health
depend largely on local climate, and particularly on local temperature. Climate-related distur-
bances in ecological systems can indirectly impact the incidence of serious infectious diseases,
while extreme temperatures can lead directly to loss of life (IWGCCH, 2010). Many stud-
ies have shown that increases in average temperature may lead to more extreme heat waves
during the summer, while producing less extreme cold spells during the winter. Higher tem-
peratures, in combination with favorable rainfall patterns, could prolong disease transmission
seasons in some locations where certain diseases already exist. In other locations, climate
change will decrease transmission via reductions in rainfall or temperatures that are too high
for transmission. Thus, temperature and humidity levels must be sufficient for certain disease-
carrying vectors, such as ticks that carry Lyme disease, to thrive (National Research Council,
2001; IPCC, 2007b).

Additionally, temperature changes are expected to contribute to air quality and health prob-
lems. In fact, respiratory disorders may be exacerbated by warming-induced increases in the
frequency of smog events and particulate air pollution (Schwartz and Randall, 2003). Sunlight
and high temperatures, combined with other pollutants such as nitrogen oxides and volatile
organic compounds, can cause ground-level ozone to increase. This increment can damage
lung tissue, and is especially harmful for those with asthma and other chronic lung diseases.
For other pollutants, the effects of climate change or weather are less studied and results
vary by region. However, it seems clear that warm temperatures can increase air and water
pollution, which in turn harm human health (McMichael et al., 2003; Schwartz and Randall,
2003).

Studying the local global climate change is a pressing challenge for public environmental and
health agencies. The problem is broad and complex. However results are needed to respond to
the challenges of global climate change (IWGCCH, 2010). The discovery of a significant trend
towards an increase or decrease in the average values of a particular climatic element becomes
a first symptom of climate change. The long-term evolution of the average temperature in a
known time interval is considered a useful indicator that is easy to understand (Meteorological
Service of Catalonia, 2010).

Motivated by these clear facts concerning the air temperature as an important climatic ele-
ment, we analyze in this paper the spatio-temporal behavior of daily air temperatures in the
Catalonian region of Spain. We propose a model to describe the mean function as well as
the spatio-temporal covariance structure of 15 years of both maximum and minimum daily
temperature data from 190 stations throughout the region of Catalonia (Spain, see Figure
1), with daily data covering the period 1994-2008. Our aim is threefold: (a) estimation of
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the long-term trend of maximum and minimum temperatures; (b) assessing the spatial and
temporal variability of temperatures, and (c) interpolation of the spatial temperatures at any
given time.

Figure 1: Situation of Catalonia region within Spain (left), and stations (in dotted points)
with daily temperature data during 1994-2008 (right)

There are now many published research papers on interpolation of temperatures (Chessa and
Delitala, 1997; Courault and Monestiez, 1999; Ninyerola et al., 2000; Degaetano and Belcher,
2006; Stahl et al., 2006, amongst many others). According to Stahl et al. (2006), schemes for
spatial interpolation of air temperature vary in relation to three aspects: (1) the approach
to adjusting for elevation, (2) the model used for characterizing the spatial variation of air
temperature, and (3) the method of choosing prediction points. Most of them do not take
into account the temporal dimension of the data. However, Luo et al. (1998) use a method
that borrows information both across space and time. In fact, they could be considered a
precedent of the related literature on spatio-temporal modeling of meteorological data (Haslett
and Raftery, 1989; Huerta et al., 2004; Lund et al., 2006).

The statistical approach used in this paper is similar to the one used in Im et al. (2009), which,
in turn, was similar to Li et al. (1999) to model particulate matter in Vancouver (Canada).
Three important differences can be found in our work. First, unlike Im et al. (2009), and to
get closer to reality, we allowed all parameters associated with the explanatory variables of the
mean function of the temperature process to vary between stations and over time. Likewise, we
allowed the ARMA models used to control autocorrelation to vary between stations, and the
spatial parameters of our model to vary with time. Second, we followed a Bayesian approach
and not a frequentist one, like in Im et al. (2009). Third, these authors estimate their
model in three consecutive stages, using the residuals from the previous step as dependent
variable. We however used a 2-stage approach. In the first stage, we assumed the stations were
spatially independent and modeled the mean function of daily average temperature controlling
for possible temporal autocorrelation. In the second stage, we modeled the spatio-temporal
covariance using the interim posterior from the residuals of the model in the first stage as
prior distributions of replications of a spatial process.
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The plan of the paper is as follows. Section 2 presents the data set motivating this paper
together with a description of the statistical strategy followed to model the data set in space
and time. The Bayesian approach together with the INLA technique are discussed further in
this Section. The results are commented in detail in Section 3. The paper ends with some
final conclusions and discussion of the results.

2. Methods

2.1. Data set

Meteorological data, recorded daily for the period 1 January 1994 to 31 December 2008,
from 190 stations throughout the region of Catalonia (Spain), were provided by the Weather
Area (Meteorological Service of Catalonia) (see Figure 1). We had maximum and minimum
temperatures, and wind (average wind speed and predominant direction) measurements for
each station. The altitude and the spatial coordinates for each station were also considered.

2.2. Modeling strategy

The spatio-temporal process defining the daily temperature was specified following Im et al.
(2009)

Yit = X
′
itβit +
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where Yit denotes either the maximum or minimum temperature on day t (in our case, from
1 January 1994 to 31 December 2008) at station i with i = 1, 2, . . . , 190. Xit contains the
explanatory variables, while β is the unknown parameter vector associated to the explanatory
variables. Φi(B)

Θi(B) denotes the ARMA model, and εit stands for the innovations at each station
on day t.

In particular, we included as explanatory variables of the mean function a long-term trend
(trend = 1, . . . , 5479, where 1 corresponded to 1 January 1994 and 5479 to 31 December 2008),
annual harmonics cos (2πn trend/365) and sin (2πn trend/365), with n = 1, 1.5, 2, 2.5, 3 cor-
responding to periods 12, 8, 6, 4.8, 4 months, respectively, and daily measurements of wind at
each station, indeed a variable measuring the interaction between the average wind speed
and the predominant direction -using a categorical variable capturing 8 sectors of the wind
rose-. We considered more complicated forms than the linear approximation for the long-term
trend, but these did not improve enough the goodness-of-fit of the models (perhaps because
we already included in the model a 12-month period harmonic). In this sense, we preferred
the parsimony of our approach to the complexity of the others.

The vector β of all parameters associated with the explanatory variables was allowed to vary
between stations and with each year (this is the reason of the sub indexes in the parameters
in (1)).
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Meteorological conditions that may persist from one day to another can influence air temper-
ature, leading to temporal correlation (Im et al., 2009). We controlled this autocorrelation
by means of ARMA models of the form

Φi(B)

Θi(B)
=

1− φ1iB − φ2iB
2 − ...− φpiBp

1− υ1iB − υ2iB2 − ...− υqiBq
(2)

where Φi (B) denotes the autoregressive (AR) component of order p; Θi (B) stands for the
moving average (MA) component of order q; B is the backshift operator (i.e. BiXt = Xt−i),
and finally φ and υ define the unknown AR and MA parameters, respectively. Note that
again we allowed the parameters of the ARMA models to vary between stations (see the
corresponding subindexes). In fact, we initially estimated ARMA(2,2) for all the stations,
and according to the statistical significance of the parameters, the models were simplified.

For the spatial covariance structure we used the Matérn family of covariance functions and
a nugget term, for a fixed t over each station i. In (1), M is the Matérn function (Stein,
1999), σ2

t I denotes the sill (the total variance of the innovation process) at time t, r2
t σ

2
t is

the variance of the spatially correlation portion of the process,
(
1− r2

t

)
σ2
t corresponds to the

nugget (the variability for a given station), ρt is the range of the process (the size of the
region where the process was significantly correlated), and finally δt is the smoothness degree
of the process (we particularly tried δt = 1, 2, 3, as we cover the most common and practical
possibilities).

2.3. Estimation

The integrated nested Laplace approximation (INLA) for Bayesian inference

Spatio-temporal models were built as Bayesian hierarchical models with two stages (Schrödle
and Held, 2010). The first stage was the observational model π (y |x), where y denotes the
vector of observations and x the vector of all Gaussian variables following a Gaussian Markov
random field (GMRF). The second stage was given by the set of hyperparameters θ and their
respective prior distribution π (θ).

Given data y for each component xi of x, the marginal posterior density of the GMRF,
π (xi |y ), can be written as,

π (xi |y ) =

∫
θ
π (xi |θ, y )π (θ |y ) dθ (3)

Assuming that the precision matrix of the Gaussian field is sparse, the integrated nested
Laplace approximation (INLA) for Bayesian inference (Rue et al., 2009) build a nested ap-
proximation of (3). In particular, we can use the approximation by a finite sum

π̃ (xi |y ) =
∑
k

π̃ (xi |θk, y ) π̃ (θk |y ) ∆k (4)
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with π̃ (xi |θ, y ) and π̃ (θ |y ) denoting approximations of π (xi |θ, y ) and π (θ |y ), respectively.

The posterior marginal π (θ |y ) of the hyperparameters is approximated using a Laplace ap-
proximation (Tierney and Kadane, 1986)

π̃ (θ |y ) ∝ π (x, θ, y)

π̃G (x |θ, y )
|x = x∗ (θ) (5)

where the denominator π̃G (x |θ, y ) denotes the Gaussian approximation of π (x |θ, y ) and
x∗ (θ) is the mode of the full conditional distribution π (x |θ, y ) (Rue and Held, 2005).

According to Rue et al. (2009), it is sufficient to numerically explore this approximate poste-
rior density using suitable support points θk, denoted as ∆k.

In this paper, we defined these points in the h-dimensional space, using the strategy called
central composite design (CCD). Centre points were augmented with a group of star points
which allowed the estimation of the curvature of π̃ (θ |y ) (Rue et al., 2009).

To approximate the first component of (4), we used a simplified Laplace approximation, less
expensive from a computational point of view with only a slight loss of accuracy (Rue et al.,
2009; Martino and Rue, 2010).

Estimation strategy

Following the INLA approach, we specified the Matérn model for the latent Gaussian field
(R-INLA, 2010) (subscripts were omitted for simplicity without loss of generality)

Corr (d) ∝ (κd)δ Kδ (κd) α = δ + d/2 (6)

where d denotes the spatial distance, Kδ defines the modified Bessel function, and δ sets the
smoothness degree of the process. The range r was defined as r =

√
8/κ.

The hyperparameters of the model were the range and the precision parameter τ (the marginal
variance of the latent field was 1/τ). Prior distributions were assigned to the log of the hy-
perparameters. In particular, Gamma distributions with parameters (i.e. shape and scale
parameters) equal to 1 were considered. The smoothness parameter, δ, however, was consid-
ered a fixed parameter. As previously mentioned, we tried δ = 1, 2, 3. In particular, δ was
chosen to minimize the value of DIC (Spiegelhalter et al., 2002)

DIC = D
(
θ̄
)

+ 2pD (7)

where D
(
θ̄
)

denotes the deviance (defined as D (θ) = −2 logL (data |θ ), and where L(.)
denotes the (frequentist) likelihood function, and θ the parameters) evaluated at the posterior
mean of the parameters, and pD is the ‘effective number of parameters’ (which measures the
complexity of the model), and is given by
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pD = Eθ|y [D]−D
(
Eθ|y [θ]

)
= D̄ −D

(
θ̄
)

(8)

with D̄ denoting the posterior mean of standardized deviance.

The Matérn correlation function was built on a regular 200× 200 lattice, covering the whole
territory of Catalonia, corresponding to a cell of 1,207.31 m (height) × 1,226.65m (base)
(1.481 km2).

For the final model estimation we used a two-stage approach. In the first stage, we assumed
the stations were spatially independent and we modeled the mean function of daily aver-
age temperatures controlling for possible temporal autocorrelation. In the second stage we
modeled the spatio-temporal covariance, using the interim posterior from the residuals of the
model (average within each cell) in the first stage as prior distributions of replications of a
spatial process. For this second part we could realistically assume that the precision matrix of
the Gaussian field was sparse (Rue and Held, 2005; Rue et al., 2009). We allowed all spatial
parameters to also vary with time.

3. Results

The analyses shown in this paper were carried out with the R freeware Statistical Package
(version 2.11.1) (R Development Core Team, 2010) and the R-INLA package (R-INLA, 2010).
The total number of measuring stations was 190 which recorded daily maximum and minimum
temperatures during the study period 1994-2008.

The daily maximum temperature increased until 2003, decreasing thereafter (Figures 2 and
3). Note, however, that from 2003 onwards the variability of the daily maximum temperature
increased dramatically, up to 15.26% each year, on average (Figure 3). This increase in
the variability was also present in the daily minimum temperatures, although less important
(8.76% on the average) and not so clear (Figures 2 and 3). Apparently, there was a decrease
in daily minimum temperatures, much more important from 2003 onwards.

Figure 2: Boxplots by year of daily maximum (left) and minimum (right) temperatures in 190
stations in Catalonia for the period 1994-2008
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Figure 3: Annual averages and standard deviations of daily maximum (left) and minimum
(right) temperatures in the 190 stations

With respect to the trend estimation in model (1), with daily maximum temperature as
dependent variable, in 152 out of the 190 stations (80.0% of all the stations) the coefficient
of the long-period trend was statistically significant at the 95% confidence level (i.e., the 95%
credible interval did not contain the zero). In the case of daily minimum temperature, in 161
out of the 190 stations (84.7% of all the stations) the 95% credible interval of the coefficient
of the long-period trend did not contain the zero.

All coefficients were ‘averaged’ using a linear mixed model, considering the station as grouping
variable and the intercept as the random effect. In the model we allowed a within-group
heteroscedasticity structure, with the standard errors of the coefficients as fixed variance
weights. On ‘average’ the estimated coefficient for the long-period trend was equal to 2.109e-
05, with a 95% credible interval (1.066e-05, 3.153e-05), for the maximum temperature, and a
coefficient of 7.987e-05, with a 95% credible interval (1.446e-05,14.528e-05), for the minimum
temperature.

These increases, however, were not homogeneous. First, the estimated daily variation in
temperature depended on the latitude for both, maximum and minimum temperatures (Figure
4). In both cases the parametric coefficient of the relationship between (estimated) daily
variation in temperature and latitude (in a generalized additive model with a Gaussian family
and identity link) was statistically significant (p<0.001) but it was not the case for the smooth
terms (p>0.1). The slope of the linear relationship was negative for maximum temperatures
(-2.155e-05) but positive, clearly deeper (8.035e-05), for minimum temperatures (Figure 4).
The estimated daily variation in temperature, however, did not depend on longitude or on
altitude.

Estimated variation in daily temperature was not homogeneous in time either (Figure 5).
Increases were only clear for the period 2004-2006 for maximum temperatures (median vari-
ation between 1994 and 2003, -0.036%, and 1.755% between 2004 and 2006), and for the
period 2002-2006 when considering minimum temperatures (0.003% of median variation be-
tween 1994 and 2001, 1.349% between 2002 and 2006). Note also that the estimated variation
was not homogeneous amongst months (Figure 6): (a) positive from April to September with
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Figure 4: Estimated daily variation by latitude (annualized percentage) in maximum (left)
and minimum (right) temperatures during the period 1994-2008

maximum temperatures (June, with a median increase of 12.74%, followed by May, with
11.89%, were the months with maximum increases and December, with -8.54%, and Febru-
ary, with -8.44%, were those months with the maximum decrease), and (b) positive from May
to October with minimum temperatures (in this case it was July, with a median increase of
9.13%, and August, with 8.74%, the months with a maximum increase; and January, with
-4.57%, February, with -4.11%, and December, with -3.98%, the months with the minimum
variation).

Figure 5: Estimated daily variation by year (annualized percentage) in maximum (left) and
minimum (right) temperatures during the period 1994-2008

The coefficients associated with the harmonics were all also statistically significant. In addi-
tion, the temporal structure in form of ARMA models was the following. Note that we allowed
the parameters of the ARMA models to vary between stations, and we initially estimated
ARMA(2,2) for all the stations, and according to the statistical significance of the parame-

ters, the models were simplified. We estimated an ARMA(2,1) model, i.e.
(1−φ1B−φ2B2)

(1−υ1B) , with

parameters (‘averaged’ as explained above) φ1 = 0.68155, φ2 = −0.05743, and υ1 = −0.18330,
in 167 stations when considering maximum temperatures, and φ1 = 0.32882, φ2 = 0.10523,
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Figure 6: Estimated daily variation by month (annualized percentage) in maximum (left) and
minimum (right) temperatures during the period 1994-2008

and υ1 = 0.28255 in 150 stations when using minimum temperatures. ARMA(1,1) models,

i.e. (1−φ1B)
(1−υiB) , with parameters φ1 = 0.48699 and υ1 = −0.01194, were fitted in 19 stations

for maximum temperatures, and in 14 stations for minimum temperatures with parame-
ters φ1 = 0.55320 and υ1 = 0.11454. An AR(1) model, i.e. (1− φ1iB), with parameter
φ1 = 0.46448 was fitted to 3 stations for maximum temperatures, and with φ1 = 0.64679 in
21 stations for minimum temperatures. Finally, a MA(1) model, i.e. (1− υ1B), was fitted
with parameter υ1 = 0.41032 in 1 station for maximum temperatures, and with υ1 = 0.48629
in 5 stations when considering minimum temperatures.

With respect to the estimation of the spatial bit of the model in (1), the value of the smooth-
ness parameter δ that minimized DIC was equal to 2 for both maximum and minimum
temperatures. The median estimated sill was (weighted average on time) 0.342 (first quar-
tile 0.139, third quartile 1.753 ) for maximum temperatures, and it was 0.339 (first quartile
0.147, third quartile 1.239 ) for minimum temperatures. For both maximum and minimum
temperatures, the median estimated range was 7,941 m (first quartile 7,908 m, third quartile
12,310 m). Finally, the median estimated nugget was practically negligible (1.272e-12 for
maximum temperatures, and 1.642e-12 for minimum temperatures).

Note that both the median and the variability of sill increased from 2004 onwards. In the
case of maximum temperatures it increased from 0.2015 on average for the period 1994-2003
to 2.2579 for the period 2004-2008 (Figure 7), and from 0.1939 to 1.7047, respectively, in
the case of minimum temperatures (Figure 7).

In Figures 8 and 9 the septiles of the distribution of the interpolated standardized residuals
(weighted average according to the temporal variation) are shown. In the case of maximum
temperatures there was an increment of both the variability and the size of the residuals from
the period 1994-2003 to 2004-2008. Note also that there was a movement of the upper septiles
to the northeast and the south, from the west central and, in a lesser extent, the east central.
The opposite behavior was found for minimum temperatures, i.e a slight decrease of both,
the variability and the size of the residuals from the period 1994-2002 to 2003-2008, and a
movement of the upper septiles to the north and the southeast, from the east and, in a lesser
extent, the west central were found.
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Figure 7: Estimated sill by year. Maximum (left plot) and minimum (right plot) temperatures

Figure 8: Standardized residuals for the maximum temperature for the period 1994-2003 (left
plot), and for the period 2004-2008 (right plot)

Figure 9: Standardized residuals for the minimum temperature for the period 1994-2002 (left
plot), and for the period 2003-2008 (right plot)
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4. Conclusions and discussion

Considering a model to describe the mean function as well as the spatio-temporal covariance
structure of 15 years of daily maximum and minimum temperature data from 190 stations
throughout Catalonia (Spain), with daily data covering the period 1994-2008, we have esti-
mated a slight increase in daily maximum temperature (0.773% annualized on average) and
a more significant increase in minimum temperature (2.960% annualized on average). These
values correspond to a 15-year increase of 0.159oC (95% credible interval 0.080oC, 0.242oC) in
maximum temperature, and an increase of 0.332oC (95% credible interval 0.008oC, 0.635oC)
in minimum temperature.

For 60 years of daily temperature data from a subset of 16 stations in Catalonia (during
the period 1950-2009), the Meteorological Service of Catalonia (2010) estimated a 10-year
increase of 0.26oC for the maximum temperature (in the range of 0.17oC – 0.34o C, depending
on the station) and of 0.17oC (range 0.09oC – 0.23oC) for the minimum temperature. There
were three differences with respect to our approach. First, the Meteorological Service of
Catalonia (2010) estimated the long term trend for each station independently, without taking
into account the spatial dimension of the data. Second, for the sub-period 1990-2009, they
estimated a 10-year increase of 0.52oC (range 0.07oC - 0.90oC) for the maximum temperature,
and 0.37oC (range 0.05oC – 0.64oC) for the minimum temperature. Finally, in their analysis
they included the year 2009 (in the 16 stations they analyzed, 2009 was the third warmest
year since 1950 - together with 1997 and, just after 2006 and 2003 - with an anomaly of 1.05oC
with respect to the climate average). In fact, they pointed out that positive trends obtained
were slightly more pronounced, due to the warm character of 2009.

The increases we estimated were not homogeneous, both for time and space. Increases were
only clear for the period 2004-2006 in maximum temperature, and for 2002-2006 in minimum
temperature. In fact, considering only these periods, the increases we estimated practically
matched those showed by the Meteorological Service of Catalonia (2010). Furthermore, in
our case, the estimated variation was not homogeneous amongst months: positive from April
to September in maximum temperature, and from May to October in minimum temperature.
These variations were very similar to those obtained from the Meteorological Service of Cat-
alonia (2010). We also found that the estimated daily variation in temperature depended on
the latitude for both, the maximum and minimum temperature. The slope of the relation-
ship was negative for the maximum temperature (-2.155e-05), and positive and clearly deeper
(8.035e-05) for the minimum temperature. The Meteorological Service of Catalonia (2010)
did not find spatial differences in the temporal variations of the stations they analyzed. It is
very likely that the differences with respect to our work and the smaller number of stations
they analyzed could explain this discrepancy.
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