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Abstract

Longitudinal or clustered response data arise in many applications such as, biostatistics,

epidemiology and environmental studies. The repeated responses can not in general be assumed

to be independent. The generalized estimating equations (GEE) approach is a widely used

method to estimate marginal regression parameters for correlated responses. The advantage of

the GEE is that the estimates of the regression parameters are asymptotically unbiased, although

their small sample properties are not known. In this paper we review the GEE methodology

for longitudinal binary data and propose a method of correcting bias of the estimates when the

sample size is potentially small. Some simulation studies are provided to illustrate the theoretical

results and applications of the GEE and its bias corrected version are also discussed to a set of

environmental data.
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1. Introduction

Longitudinal studies are characterized by repeated measures over a period of time from each

individual. Usually the subjects are assumed to be independent while the repeated measurements

taken on each subject are correlated. The complication of longitudinal data analysis is partly due to

the lack of a rich class of models such as the multivariate Gaussian for the joint distribution of the

correlated responses (Liang and Zeger, 1986). Liang and Zeger (1986) introduced the generalized

estimating equations (GEE) approach for analyzing longitudinal data in which a working correlation

matrix for the responses of each individual is used. The GEE approach requires specification of

only the first two moments of a subject’s responses rather than the full specification of the joint

distribution. The main advantage of the GEE is that the estimators are consistent (asymptotically

unbiased) even if the working correlation structure is misspecified. However, the GEE technique

may produce biased estimates in the case of small to moderate sample sizes.

Under general conditions, maximum likelihood (ML) estimators are consistent. However, they

are not unbiased generally. Cox and Snell (1968) provided general results for the first-order cor-

rection of bias of maximum likelihood estimators for any distribution. Cordeiro and Klein (1994)

gave a general matrix formula for computing the bias of the ML estimates. In this paper we review

the GEE methodology for longitudinal binary data and using Cox and Snell (1968) and Cordeiro

and Klein (1994) we propose a method of correcting bias of the estimates when the sample size is

potentially small. We shall evaluate the method by some simulation studies and applications of the

method are discussed to a set of environmental data.

In Section 2 we review the general results for first-order correction of bias of maximum likeli-

hood estimators by Cox and Snell (1968). The bias correction of GEE estimates and bias-corrected

generalized estimating equation method are derived in Section 3. In section 4, the bias correction

methods are applied to longitudinal binary and poisson data. In section 5, some simulation studies

are performed. Two examples are given in section 6 and a discussion follows in Section 7.
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2. The GEE estimating method in longitudinal data

Consider a longitudinal study with K subjects, each subject having d repeated measures yi =

(yi1, . . . , yid)
T and a d× p design matrix Xi = (xi1, . . . , xid)

T with elements xij = (xij1, · · · , xijp)T .

Assume that the K subjects are independent while the repeated measurements yij taken on each

subject are correlated. Define µi = E(yi|Xi) = (µi1, . . . , µid)
T to be the expectation of yi conditional

on Xi and suppose µi = g(Xiβ), where β is a p× 1 vector of regression parameters of interest and

g−1 is the link function. Assume that the variance of yij is given by φv(µij), where v is the

variance function and φ is the overdispersion parameter. Let R(ρ) be a working correlation matrix

completely specified by the parameter vector ρ of length q. Then φWi = φA
1/2
i R(ρ)A

1/2
i is the

corresponding working covariance matrix, where Ai(β) = diag{v(µij)}, j = 1, . . . , d, i = 1, . . . ,K.

Standard working correlation matrices R(ρ) (Liang and Zeger, 1986), Wang and Carey, 2003)

are:

i) exchangeable correlation structure in which the diagonal elements of R(ρ) are 1 and the

off-diagonal elements are ρ,

ii) AR(1) correlation structure in which the diagonal elements of R(ρ) are 1 and the off-diagonal

elements are ρ|i−j| , i 6= j,

iii) the general autocorrelation structure

R(ρ1, . . . , ρd−1) =


1 ρ1 ρ2 · · · ρd−1

ρ1 1 ρ1 · · · ρd−2
...

...
. . . · · ·

...

ρd−1 ρd−2 ρd−3 · · · 1

 ,

and iv) the unstructured correlation matrix (Liang and Zeger, 1986)

R =


1 ρ12 ρ13 · · · ρ1,d−1

ρ12 1 ρ23 · · · ρ2,d−2
...

...
. . . · · ·

...

ρ1,d−1 ρ2,d−2 ρ3,d−3 · · · 1

 . (2.1)

Let y∗ij = (yij− µ̂ij)/
√
µ̂ij(1− µ̂ij). Then, the method of moments estimate of (i) the common
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correlation coefficient ρ in the exchangeable correlation structure is

ρ̂ =

∑K
i=1

∑
j 6=k y

∗
ijy
∗
ik

(d− 1)
∑K

i=1

∑d
j=1 y

∗
ij
2
,

(ii) the common correlation coefficient ρ in the AR(1) correlation structure is

ρ̂ =

∑K
i=1

∑d
j=2 y

∗
ijy
∗
i,j−1∑K

i=1{
∑d−1

j=2 y
∗
ij
2 + (y∗i1

2 + y∗id
2)/2}

,

(iii) the correlation parameter ρl in R(ρ1, . . . , ρd−1) is

ρ̂l =

∑K
i=1

∑d−l
j=1 y

∗
ijy
∗
i,j+l/(d− l)∑K

i=1

∑d
j=1 y

∗
ij
2/d

, l = 1, . . . , d− 1.

Finally, the estimate of the unstructured correlation matrix is given by

R̂ =
K∑
i=1

Â
−1/2
i SiS

T
i Â
−1/2
i /K, where Si = yi − µ̂i, i = 1, . . . ,K.

For given consistent estimates of φ and ρ, the estimate β̂ is the solution of the GEE equations

K∑
i=1

(yi − µi)TW−1i Di = 0, (2.2)

where Di = ∂µi
∂βT . The estimator β̂GEE obtained by solving equation (2.2) is consistent even if the

covariance structure is miss-specified. However, the miss-specification of the covariance structure

may result in inefficient estimates of the regression parameters (for more details, see Wang and

Carey, 2003).

Under mild regularity conditions, K1/2(β̂GEE − β) is asymptotically multivariate normal with

mean zero and covariance matrix

lim
K→∞

K

(
K∑
i=1

DT
i W

−1
i Di

)−1 [ K∑
i=1

DT
i W

−1
i cov(Yi)W

−1
i Di

](
K∑
i=1

DT
i W

−1
i Di

)−1
.

The estimated covariance matrix obtained by this formula is called the robust covariance estimator

for β̂GEE .

An iterative algorithm to obtain the above GEE estimate β̂GEE can be described as what

follows:
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Step 1: Choose an initial value β̂ of β.

Step 2: For given β̂, the moment estimate of the overdispersion parameter is

φ̂ =
1

Kd

K∑
i=1

ẐTi Ẑi, where Ẑi = A
−1/2
i (β̂)(yi − µ̂i).

Step 3: For given β̂ and φ̂, calculate the moment estimates ρ̂ of α (Liang and Zeger, 1986 and

Wang and Carey, 2003). For example, if the working exchangeable correlation is used, Wang and

Carey (2003) estimate ρ by

ρ̂ =

∑K
i=1

∑
j 6=k y

∗
ijy
∗
ik

φ̂(d− 1)
∑K

i=1

∑d
j=1 y

∗
ij
2
, where y∗ij = (yij − µ̂ij)/

√
v(µ̂ij).

Step 4: For given estimated working correlation matrix R(ρ̂), the estimator of β is updated

according to the modified Fisher scoring formula

β̃ = β̂ +

{
K∑
i=1

D̂T
i Ŵ

−1
i D̂i

}−1{ K∑
i=1

D̂T
i Ŵ

−1
i (Yi − µ̂i)

}
,

where D̂i = ∂µi/∂β
T
∣∣
β̂

and Ŵi = Ai(β̂)R(ρ̂)Ai(β̂).

Step 5: Iterate step 2 - 4 until |β̃ − β̂| is less than a desired convergence rate. β̂GEE = β̃ is

the estimate of the regression parameter. The estimate of ρ is given by ρ̂ and the estimate of φ is

given by φ̂.

3. The bias corrected GEE estimator in longitudinal data

The left hand side of equation (2.2) which can be written as

U(β;α, φ) =

K∑
n=1

(yn − µn)TW−1n

∂µn
∂βT

(3.1)

is the generalized estimating function for β given α and φ. Let U(β;α, φ) = (U1, U2, . . . , Up).

Under general conditions, maximum likelihood (ML) estimators are consistent. However, they are

not unbiased generally. Cox and Snell (1968) provided general results for the first-order correction

of bias of ML estimators of parameters under any distribution. Cordeiro and Klein (1994) provided
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simplified form of the general results of Cox and Snell (1968). For the purpose of obtaining bias-

corrected GEE estimates we treat Ui as if it were a likelihood score function for βi, i = 1, . . . , p.

Now, define κij = E(∂Ui/∂βj) for i, j = 1, . . . , p. Further, define κijl = E(∂2Ui/∂βj∂βl),

κ
(l)
ij = ∂κij/∂βl and kij,l = E(∂Ui

∂βj
Ul) for i, j, l = 1, . . . , p. Then the Fisher information matrix

analogue of order p for β is I = {−κij}. Now, let I−1 = {κij} be the inverse of I. Then, following

Cordeiro and Klein (1994) the bias of β̂s can be expressed as

bs(β̂) =

p∑
i=1

κsi
p∑

j,l=1

[
κ
(l)
ij −

1

2
κijl

]
κjl, s = 1, . . . , p. (3.2)

In fact, the bias of the GEE estimator of the regression coefficients could also be written in

the following matrix form:

bs(β̂) = I−1 ·A · V ec(I−1),

where V ec(I−1) denotes the vector obtained by stacking the columns of I−1 and

Ap×p2 = ({a(1)ij }, · · · , {a
(l)
ij }) =


a
(1)
11 · · · a

(1)
1p · · · a

(p)
11 · · · a

(p)
1p

a
(1)
21 · · · a

(1)
2p · · · a

(p)
21 · · · a

(p)
2p

...
...

...
...

a
(1)
p1 a

(1)
pp a

(p)
p1 a

(p)
pp


with a

(l)
ij = k

(l)
ij −

1
2kijl = 1

2(k
(l)
ij + kij,l), i, j, l = 1, . . . , p.

Then the bias corrected estimate β̃s, of βs is given by β̃s = β̂s − b(β̂s).

4. Application to binary data

For the vector of binary responses yi, the variance function is given by v(µ) = µ(1−µ) and we

consider the logit and probit link functions. The inverse of the probit link is given by g(x) = Φ(x),

namely the cumulative distribution function of the standard normal distribution, thus the 1st and

2nd derivatives are ġ(x) = φ(x) = 1√
2π

exp(−x2

2 ), g̈(x) = −x√
2π

exp(−x2

2 ). The inverse of the logit

link is given by g(x) = exp(x)
1+exp(x) , then the 1st and 2nd derivatives are ġ(x) = exp(x)

(1+exp(x))2
, g̈(x) =

exp(x)(exp(x)−1)
(1+exp(x))3

.
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Let Ip be a p-dimensional identity matrix, 1p be a p-dimensional column vector with all elements

being 1, then the quantities required for the calculation of the bias bs(β) are given by I = {−kij} =

{−E(∂Ui
∂βj

)} = {E(UiUj)} = E(UUT ) =
n∑
i=1

DT
i W

−1
i Di and

AT =


{a(1)ij }

...

{a(l)ij }

 =
1

2
(


{k(1)ij }

...

{k(p)ij }

+


{kij,1}

...

{kij,p}

) =
1

2

n∑
i=1

(Qi − Pi),

where

Pi = (Ip ⊗XT
i ) · {diag(V ec(Xi)) · [Ip ⊗ (∆̇iW

−1
i ∆i)]

+ [Ip ⊗ (∆iW
−1
i ∆̇i)] · diag(V ec(Xi))} · (1p ⊗Xi)

Qi = {Ip ⊗ {(1Tp ⊗XT
i )diag(V ec(Xi))[Ip ⊗ ∆̇iW

−1
i ∆i]}} ·


Ip ⊗ X̃i1

...

Ip ⊗ X̃ip


∆i = diag(ġ(xTi1β), · · · , ġ(xTidβ)), ∆̇i = diag(g̈(xTi1β), · · · , g̈(xTidβ))

and X̃ij denotes the j-th column of Xi, j = 1, . . . , p. In particular, for the probit link, ∆i =

diag(φ(xTi1β), · · · , φ(xTidβ)), while ∆i = diag(
exp(xTi1β)

(1+exp(xTi1β))
2 , · · · ,

exp(xTidβ)

(1+exp(xTidβ))
2 ) for the logit link.

5. Simulation studies

In this section, we are to assess and compare the performances of bias corrected estimators

under discrete binary responses with different sample size by simulation studies. The binary re-

sponse is generated using mvtBinaryEP package (Emrich and Piedmonte, 1991) in R software from

a logistic regression model with the mean structure µit = exp(0.5+0.6xi1+0.6xi2)
1+exp(0.5+0.6xi1+0.6xi2)

, where the AR(1)

intra-individual correlation structure with correlation parameter ρ = 0.5 is considered. The disper-

sion parameter is 1 and the covariates are generated at random from uniform distribution U [0, 1].

Relative large sample size with 300, 200 and 100 subjects and 5 repeated measurements are consid-

ered. In addition, the simulation is repeated with smaller sample sizes of 50, 30 and 10 subjects and

5 repeated measurements to check the performance of the bias corrected GEE estimator. The sim-

ulation results are shown in Table 1, where B-C GEE denotes the bias corrected GEE estimators,
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Table 1: The GEE and bias-corrected GEE estimators with binary response.

n=300 n=200 n=100

GEE(SD) B-C GEE(SD) GEE(SD) B-C GEE(SD) GEE(SD) B-C GEE(SD)

β0 0.4021(0.0187) 0.4013(0.0187) 0.3602(0.0256) 0.3560(0.0254) 0.2233(0.0422) 0.2224(0.0420)

β1 0.5711(0.0285) 0.5692(0.0284) 0.8765(0.0366) 0.8710(0.0365) 0.9435(0.0570) 0.9348(0.0563)

β2 0.4370(0.0257) 0.4356(0.0257) 0.6871(0.0395) 0.6833(0.0392) 0.3231(0.0695) 0.3201(0.0689)

n=50 n=30 n=10

GEE(SD) B-C GEE(SD) GEE(SD) B-C GEE(SD) GEE(SD) B-C GEE(SD)

β0 0.2760(0.0915) 0.2749(0.0892) 0.6828(0.2074) 0.6662(0.2044) -0.1604(0.3767) -0.1410(0.3566)

β1 0.8141(0.1870) 0.7974(0.1811) 0.7461(0.3334) 0.7096(0.3194) 1.7232(0.7646) 1.5818(0.7370)

β2 0.6126(0.0778) 0.5988(0.0771) 1.0338(0.3660) 0.9982(0.3430) -0.0874(0.4943) -0.0841(0.4428)

SD is the robust standard error.

It could be observed from the simulation results that for large sample size, the bias is very

small, while for relative small sample size, the bias would be significant and the corresponding

bias-corrected GEE estimator for regression coefficient would have smaller variance than the GEE

estimator. The simulation results for other cases with different working models and link functions

are similar and are not reported here to save space.

6. Examples

Example 1: We consider the subset of data from the Six Cities study, a longitudinal study of

the health effects of air pollution that was analyzed by Fitzmaurice and Laird (1993). The data set

contains complete records on 537 children from Steubenville, Ohio, each of whom was examined
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annually at ages 7, 8, 9 and 10. The repeated binary response is the wheezing status (1=yes, 0=no)

of a child at each occasion. The purpose of the study is to model the probability of the wheezing

status as a function of the child’s age, his/her mother’s maternal smoking habit (a binary variable

MS with 1 if the mother smoked regularly and 0 otherwise) and their interactions. We consider the

same marginal model used by Fitzmaurice and Laird (1993) with a logit link

logit(µ) = β0 + β1Age + β2MS + β3Age*MS, (6.1)

where ‘age’ is the age in years since the child’s 9th birthday.

The GEE estimates and the robust standard errors of the regression parameters β0, β1, β2 and

β3 are −1.9005(0.1191), −0.1412(0.0582), 0.3138(0.1878) and 0.0708(0.0883) , respectively. The

bias-corrected GEE estimates and the robust standard errors are −1.8942(0.1185), −0.1404(0.0579),

0.3160(0.1868) and 0.0706(0.0878) , respectively. We can see that the differences between GEE and

the bias-corrected GEE estimates are very small. This is because of the large sample size 537.

Example 2: In order to check what happens if the sample size is small, we consider a sub-sample

of the data set of size 50. The data are given in Table 2.

For this data set the GEE estimates and the robust standard errors of the regression param-

eters β0, β1, β2 and β3 are −2.3598(0.4900), −0.1205(0.1853), 0.9674(0.6496) and 0.2854(0.2681) ,

respectively. The corresponding bias corrected GEE estimates and the robust standard error are

−2.2404(0.4441), −0.1079(0.1683), 0.9133(0.6049) and 0.2602(0.2503) , respectively.

We see that there is significant difference between the GEE and the bias-corrected GEE esti-

mates. Also, the standard errors of the bias-corrected GEE estimates are smaller, indicating that

bias corrected estimates might have higher precision. This property was observed for many other

small sub-samples investigated.

7. Discussion

In this paper we obtain a bias corrected GEE estimates of the regression parameters in longitu-

dinal data. The proposed approach is based on correcting the GEE following a method by Cox and

Snell (1968) which was later simplified by Cordeiro and Klein (1994). The bias corrected GEE es-
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timates shows superior performance in terms of bias and efficiency compared to the GEE estimates

for small samples. Some simulation results and an example provided confirms these findings.

The standard errors of the estimates in the two examples are calculated by the sandwich

formula in the GEE estimation. When the sample size is small, the sandwich estimator usually

underestimates the true variance of the estimate of the regression parameters. In this case, the two

bias-corrected covariance estimators proposed by Kauermann and Carroll (2001) and Mancl and

DeRouen (2001) can be used to correct the bias of the covariance estimator.
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Table 2: A sample of the subset of data from the six cities study.

ID Y1 Y2 Y3 Y4 MS ID Y1 Y2 Y3 Y4 MS

4 0 0 0 0 0 279 0 1 0 0 0

15 0 0 0 0 0 280 0 1 0 0 0

25 0 0 0 0 0 290 0 1 1 0 0

57 0 0 0 0 0 303 1 0 0 0 0

67 0 0 0 0 0 347 1 1 1 1 0

70 0 0 0 0 0 352 0 0 0 0 1

76 0 0 0 0 0 359 0 0 0 0 1

78 0 0 0 0 0 361 0 0 0 0 1

86 0 0 0 0 0 378 0 0 0 0 1

106 0 0 0 0 0 399 0 0 0 0 1

110 0 0 0 0 0 405 0 0 0 0 1

111 0 0 0 0 0 409 0 0 0 0 1

125 0 0 0 0 0 414 0 0 0 0 1

155 0 0 0 0 0 423 0 0 0 0 1

180 0 0 0 0 0 446 0 0 0 0 1

183 0 0 0 0 0 448 0 0 0 0 1

185 0 0 0 0 0 452 0 0 0 0 1

199 0 0 0 0 0 470 0 0 0 1 1

200 0 0 0 0 0 474 0 0 0 1 1

218 0 0 0 0 0 495 0 1 0 0 1

228 0 0 0 0 0 498 0 1 1 0 1

229 0 0 0 0 0 502 0 1 1 0 1

236 0 0 0 0 0 503 0 1 1 1 1

238 0 0 0 1 0 509 1 0 0 0 1

277 0 1 0 0 1 535 1 1 1 1 1
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