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Department of Mathematics and Statistics

Masaryk University Brno

Abstract

The present paper is focused on a fully nonparametric regression model for autocorre-
lation structure of errors in time series over total ozone data. We propose kernel methods
which represent one of the most effective nonparametric methods.

But there is a serious difficulty connected with them – the choice of a smoothing pa-
rameter called a bandwidth. In the case of independent observations the literature on
bandwidth selection methods is quite extensive. Nevertheless, if the observations are de-
pendent, then classical bandwidth selectors have not always provided applicable results.
There exist several possibilities for overcoming the effect of dependence on the bandwidth
selection. In the present paper we use the results of Chu and Marron (1991) and Koláček
(2008) and develop two methods for the bandwidth choice. We apply the above men-
tioned methods to the time series of ozone data obtained from the Vernadsky station in
Antarctica. All discussed methods are implemented in Matlab.

Keywords: total ozone, kernel, bandwidth selection.

1. Introduction

Antarctica is significantly related to many environmental aspects and processes of the Earth.
And thus its impact on the global climate system and water circulation in the world ocean is
essential.

The stratosphere ozone depletion over Antarctica was discovered at the beginning of the
1990s. The lowest total ozone contents (TOC) in Antarctica are usually observed in the first
week of October. The formation of ozone depletion begins approximately in the second half of
August, culminates in the first half of October, and dissolves in November. During the ozone
depletion, the average ozone concentration varied at the time of its culmination in October
from the original value over 300 Dobson Units (DU) in 1950s and 1960s to a level between
100 and 150 DU in 1990-2000 (see Láska et al. (2009)). One DU is set as a 0.001 mm strong
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layer of ozone under the pressure 1013 hPa and temperature 273 K.

One of the issues resolved within the Czech–Ukrainian scientific cooperation implemented on
the Vernadsky Station in Antarctica is the measurement of total ozone content (TOC) in the
stratosphere. The Vernadsky station is located on the west coast of Antarctic peninsula (65◦S,
64◦W). These data were obtained from ground measurements predominantly taken with the
Dobson No 031 spectrophotometer. Data can be found at UAC (2012).

The data sets were processed as time points measuring the average daily amount of ozone.
In order to analyze these data we have to take into account the autocorrelation structure
of errors on such time series. We focus on kernel regression estimators of series of ozone
data. These estimators depend on a smoothing parameter and it is well-known that selecting
the correct smoothing parameter is difficult in the presence of correlated errors. There exist
methods which are modifications of a classical cross-validation method for independent errors
(the modified cross-validation method or the partitioned cross-validation method - see Chu
and Marron (1991), Härdle and Vieu (1992)).

In the present paper we develop a new flexible plug-in approach for estimating the optimal
smoothing parameter. The utility of this method is illustrated through a simulation study
and application to TOC data measured in periods August to April 2004-2005, 2005-2006,
2006-2007.

2. Procedure Development

2.1. Kernel regression model

In nonparametric regression problems we are interested in estimating the mean function
E(Y |x) = m(x) from a set of observations (xi, Yi), i = 1, . . . , n. Many methods such as
kernel methods, regression splines and wavelet methods are currently available. The papers
in this filed have been mostly focused on case where an unknown function m is hidden by a
certain amount of a white noise. The aim of a regression analysis is to remove the white noise
and produce a reasonable approximation to the unknown function m.

Consider now the case when the noise is no longer white and instead contains a certain amount
of a structure in the form of correlation. In particular, if data sets have been recorded over
time from one object under a study, it is very likely that another response of the object will
depend on its previous response. In this context we will be dealing with a time series case,
where design points are fixed and equally spaced and thus our model takes the form

Yi=m(i/n)+εi, i = 1, . . . , n, (1)

and εi is an unknown ARMA process, i.e.,

E(εi) =0, var(εi) = σ2, i = 1, . . . , n,

cov(εi, εj) =γ|i−j| = σ2ρ|i−j|, corr(εi, εj) = ρ|i−j|
(2)

and the stationary process

γ0 = σ2, ρt =
γt
γ0
,
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where ρt is an autocorrelation function and γt is an autocovariance function. We consider the
simplest situation (Opsomer et al. (2001), Chu and Marron (1991))

ρt/n = ρt.

Simple and the most widely used regression smoothers are based on kernel methods (see
e.g. monographs Müller (1987), Härdle (1990), Wand and Jones (1995)). These methods are
local weighted averages of the response Y . They depend on a kernel which plays the role
of a weighted function, and a smoothing parameter called a bandwidth which controls the
smoothness of the estimate.

Appropriate kernel regression estimators were proposed by Priestley and Chao (1972), Nadaraya
(1964) and Watson (1964), Stone (1977), Cleveland (1979) and Gasser and Müller (1979).

These estimators were shown to be asymptotically equivalent (Lejeune (1985), Müller (1987),
Wand and Jones (1995)) and without the lost of generality we consider the Nadaraya–Watson
(NW) estimators m̂ of m. The NW estimator of m at the point x ∈ (0, 1) is defined as

m̂(x, h) =

n∑
i=1

Kh(xi − x)Yi

n∑
i=1

Kh(xi − x)

, (3)

for a kernel function K, where Kh(.) = 1
hK( .h), and h is a nonrandom positive number

h = h(n) called the bandwidth.

Before studying the statistical properties of m̂ several additional assumptions on the statistical
model and the parameters of the estimator are needed:

I. Let m ∈ C2[0, 1].

II. Let K be a real valued function continuous on R and satisfying the conditions:

(i) |K(x)−K(y)| ≤ L|x− y| for a constant L > 0, ∀x, y ∈ [−1, 1],

(ii) support(K) = [−1, 1], K(−1) = K(1) = 0,

(iii)
∫ 1
−1 x

jK(x)dx =


1 j = 0,

0 j = 1,

β2 6= 0 j = 2.

Such a function is called a kernel of order 2 and a class of these kernels is denoted
as S02.

III. Let h = h(n) be a sequence of nonrandom positive numbers, such that h → 0 and
nh→∞ as n→∞.

IV. lim
n→∞

∞∑
k=1

|ρk| <∞, i.e., R =
∞∑
k=1

ρk exists,

V. 1
n

∞∑
k=1

k|ρk| = 0.
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Remark. The well-known kernels are, e.g.,

Epanechnikov kernel K(x) = 3
4(1− x2)I[−1,1],

quartic kernel K(x) = 3
4(1− x2)2I[−1,1],

triweight kernel K(x) = 35
32(1− x2)2I[−1,1],

Gaussian kernel K(x) = 1√
2π

e
−x2

2 ,

where I[−1,1] is an indicator function.

Though the Gaussian kernel does not satisfy the assumption II.(ii), it is very popular in many
applications.

There is no problem with a choice of a suitable kernel. Symmetric probability density functions
are commonly used (see Remark above). But choosing the smoothing parameter is a crucial
problem in all kernel estimates. The literature on bandwidth selections is quite extensive in
case of independent errors.

It is well known that when the kernel method is used to recover m, that correlated errors
trouble bandwidth selection severely (see Altman (1990), Opsomer et al. (2001)). De Braban-
ter et al. (2010) developed a bandwidth selection procedure based on bimodal kernels which
successfully removes the error correlation without requiring any prior knowledge about its
structure.

The global quality of the estimate m̂ can be expressed by means of the Mean Integrated
Squared Error (Altman (1990), Opsomer et al. (2001)). However more mathematically
tractable is the Asymptotic Mean Integrated Squared Error (AMISE):

AMISE(m̂, h) =
V (K)

nh
S︸ ︷︷ ︸

AIV(m̂,h)

+
β22
4
h4A2︸ ︷︷ ︸

AISB(m̂,h)

,

where

V (K) =
∫
K2(x)dx, S = σ2(1 + 2

∞∑
k=1

ρk) = σ2(1 + 2R), A2 =
∫ 1
0 m

′′(x)2dx.

The first term is called the asymptotic integrated variance (AIV) and the second one the
asymptotic integrated squared bias (AISB). This decomposition provides an easier analysis
and interpretation of the performance of the kernel regression estimator.

Using a standard procedure of mathematical analysis one can easily find that the bandwidth
hopt minimizing the AMISE is given by the formula

hopt =
(V (K)S

nβ22A2

)1/5
= O(n−1/5). (4)

This formula provides a good insight into an optimal bandwidth, but unfortunately it depends
on the unknown S and A2.

Let us explain the impact of assuming an uncorrelated model.
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If R > 0 (error correlation is positive), then AIV(m̂, h) is larger than in the corresponding
uncorrelated case and AMISE(m̂, h) is minimized by a value h that is larger than in the
uncorrelated case. It means that assuming wrongly uncorrelated errors causes that the
bandwidth becomes too small.

If R < 0 (error correlation is negative), then AIV(m̂, h) is smaller and AMISE(m̂, h) optimal
bandwidth is smaller than in the uncorrelated case.

In the next section the choosing of parameters S and A2 will be treated.

2.2. Choosing the parameters

There are a number of data-driven bandwidth selection methods, but it can be shown that
they fail in the case of correlated errors.

Among the earliest fully automatic and consistent bandwidth selectors are those based on
cross-validation ideas. The cross-validation method employs an objective function

CV (h) =
1

n

n∑
j=1

(
m̂−j(xj , h)− Yj

)2
, (5)

where m̂−j(xj , h) is the estimate of m̂(xj , h) with xj deleted, i.e., the leave-one-out estimator.

The estimate of hopt is then

ĥopt = arg min
h∈Hn

CV (h),

where Hn = [an−1/5, bn−1/5], 0 < a < b <∞.

Remark. If the design points are equally spaced then a recommended interval is [ 1n , 1).

However, this ordinary method is not suitable in the case of correlated observations. As
it was shown in the papers Altman (1990) and Opsomer et al. (2001), if the observations
are positively correlated, then the CV method produces too small a bandwidth, and if the
observations are negatively correlated, then the CV method produces a large bandwidth.

We demonstrate this fact by the following example.

Consider the regression model (1), where

m(x) = cos (3.15πx), εi = φεi−1 + ei,

ei – i.i.d. normal random variables N(0, σ2),

ε1 – N(0, σ2/(1− φ2)),
φ = 0.6, σ = 0.5,

i.e, the regression errors are AR(1) process.

Figure 1 shows the result obtained by the CV method. It is evident, that the estimate is
undersmoothed.

In order to overcome this problem, modified and partitioned CV methods were proposed by
Härdle and Vieu (1992) and Chu and Marron (1991), respectively.
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Estimate obtained with bandwidth selected by CV

Simulated data with AR(1) correlation

Figure 1: The estimate of simulated data with AR(1) errors

The modified cross-validation (MCV) method is a ”leave-(2l + 1)-out” version of CV (l ≥ 0).
The idea consists in minimizing of the modified cross-validation score:

CVl(h) =
1

n

n∑
j=1

(
m̂−j(xj , h)− Yj

)2
, (6)

where m̂−j(xj , h) is the ”leave-(2l+1)-out”estimate of m̂(xj , h), i.e., the observations (xj+i, Yj+i),
−l ≤ i ≤ l are left out in constructing m̂(xj , h).

Then

ĥMCV = arg min
h∈Hn

CVl(h).

The principle of the partitioned cross-validation method (PCV) can be described as follows.

For any natural number g ≥ 1, the PCV involves splitting the observations into g groups by
taking every g-th observation, calculating the ordinary cross-validation score CV0,k(h) of the
k-th group of observations separately, for k = 1, 2, . . . , g, and minimizing the average of these
ordinary cross-validation scores

CV ∗(h) =
1

g

g∑
k=1

CV0,k(h). (7)

Let ĥ∗CV stand for the minimizer of CV ∗(h):

ĥ∗CV = arg min
h∈Hn

CV ∗(h).

Since ĥ∗CV is appropriate for the sample size n/g, the partitioned cross-validated bandwidth

ĥPCV (g) is defined to be rescaled ĥ∗CV :

ĥPCV (g) = g−1/5ĥ∗CV .

When g = 1, the PCV is an ordinary cross-validation.
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Remark. The number of subgroups is g and the number of observations in each group is
η = n/g. If n is not a multiplier of g, then the values Yj , 1 ≤ j ≤ g[n/g] are applied and
the rest of the observations are dropped out ([n/g] is the highest integer less or equal
to n/g).

The asymptotic behavior of ĥMCV (l) and ĥPCV (g) was studied in the paper by Chu and Marron
(1991). Furthemore we focus on the PCV method.

The PCV method needs to determine the factor g. A possible approach for the practical
choice of g is based on an analogue of the mean squared error. Using the asymptotic variance
and the asymptotic mean of ĥPCV (g)/hopt, the asymptotic mean squared error (AMSE) of
this ratio is defined by

AMSE
(
ĥPCV (g)/hopt

)
= n−1/5VARPCV (g) +

[
CPCV (g)/C − 1

]2
, (8)

where VARPCV (g), CPCV (g), C depend on γk,K,A2 (see Chu and Marron (1991)).

Theoretically, if there exists a value ĝ which minimizes AMSE over g ≥ 1, then this value is
taken as the optimal value of g in the sense of AMSE:

ĝopt = arg min
g≥1

AMSE
(
ĥPCV (g)/hopt

)
.

Unfortunately the minimization of AMSE also depends on the unknown γk and A2.

As far as the estimation of the variance component S is concerned, a common approach is
the following (see e.g. Herrmann et al. (1992), Hart (1991), Opsomer et al. (2001), Chu and
Marron (1991)):

Ŝ =γ̂0

(
1 + 2

n−1∑
k=1

ρ̂k

)
, γ̂0 = σ̂2, ρ̂k =

γ̂k
γ̂0
,

γ̂k =
1

n− k

n−k∑
t=1

(
Yt − Y

)(
Yt+k − Y

)
, k = 0, . . . , n− 1.

(9)

Nevertheless there is still a problem of how to estimate A2. In paper Chu and Marron (1991)
a simulation study was only conducted and no idea of estimating A2 was given there.

We complete this method by adding a suitable estimate of A2 and recommend to use an
estimate of A2 proposed by Koláček (2008). By means of the Fourier transformation he

derived a suitable estimate Â2 of A2. Therefore, A2 in the AMSE formula is replaced by Â2.
This approach is commonly known as a plug-in method.

Plug-in methods are also commonly used for selecting the bandwidth in the kernel regression.
But these methods perform badly when the errors are correlated. In the paper Herrmann
et al. (1992) a modified version of an existing plug-in bandwidth selectors is proposed. This
method is based on the Gasser–Müller estimator of the second derivative and an iterative
process is constructed. It is shown that under some additional assumptions this iterative
process converges to a suitable estimate of the optimal bandwidth.

However we do not use this iterative method and propose to directly plug-in A2 in the formula
(4). This new version of a plug-in method is denoted as PI and the bandwidth estimate takes
the form:

ĥPI =
(V (K)Ŝ

nβ22Â2

)1/5
.
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Figure 2: The regression function m(x)

hopt = 0.759

E(ĥ) std(ĥ)

PCV 0.1927 0.0649
PI 0.1513 0.0083

Table 1: The estimates ĥ

We would like to point out the computational aspect of the plug-in method. It has preferable
properties to classical methods, because it does not need any additional calculations such as
the PCV method (see Koláček (2008) for details).

3. Case study

We conduct a simulation study to compare the PCV method and the PI method. The
Epanechnikov kernel is used both in simulations and in applications.

Consider the regression model (1), where

m(x) =
−6 sin 11x+ 5

cotg(x− 7)
, εi = φεi−1 + ei

ei – i.i.d. normal random variables N(0, σ2)

ε1 – N(0, σ2/(1− φ2))
φ = 0.6, σ = 0.5,

for i = 1, . . . , n = 100.

The graph of the regression function m is presented in Figure 2.

One hundred series are generated. For each data set, the optimal bandwidth is estimated by
the PCV and PI method. Table 1 shows the comparison of means and standard deviations
for these two methods.
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Figure 4: The autocorrelation function of the data set August 2004 – April 2005

The Integrated Square Error (ISE) is calculated for each estimate m̂(., h):

ISE(m̂(., h)) =

∫ 1

0

(
m̂(x, h)−m(x)

)2
dx

for both PCV and PI methods and the results are displayed by means of the boxplots in
Figure 3.

4. Results and discussion

In this section we apply the methods described above to ozone data. We analyze data which
were measured in the period August to April in years 2004–2005, 2005–2006, 2006–2007. The
sample size is n = 273 days. The observations are correlated as it can be seen in Figure 4. We
transform data to the interval [0,1] and use the PCV method and the PI method to get the
optimal bandwidth. Then we re-transform the bandwidth to the original sample and obtain
the final kernel estimate.

Kernel estimates based on the PCV and PI methods are presented in Figure 6, Figure 7, or
in Figure 8, respectively.
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Figure 5: RLWR estimate with span = 40 (dashed line) and PI estimate with the bandwidth
= 17.8 (solid line).
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Figure 6: PCV estimate with the bandwidth = 20.9 (dashed line) and PI estimate with the
bandwidth = 17.8 (solid line).

In paper Kalvová and Dubrovský (1995) the robust locally wighted regression (RLWR) is
employed for data processing of TOC. They recommended to optimize h subjectively. This
approach needs an experience and a special knowledge of the given data sets. The advantage
of our methods consists in more complex approach. These methods are general and they
allow to choose the value of h automatically. We used their methodology for data April 2004
- August 2005 and the comparison of the estimate obtained by the PI method and by the
robust locally weighted regression can be seen in Figure 5. The PI method yields a rather
oversmoothed estimate.

Our experience shows that both methods could be considered as a suitable tool for the choice
of the bandwidth. But it seems that the PI method is sufficiently reliable and less time
consuming than the PCV method.

Presented methods can be applied to other time series not only in environmetrics but also in
economics or other fields.
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Figure 7: PCV estimate with the bandwidth = 20.4 (dashed line) and PI estimate with the
bandwidth = 21.9 (solid line).
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Figure 8: PCV estimate with the bandwidth = 17.2 (dashed line) and PI estimate with the
bandwidth = 22.3 (solid line).
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Masaryk University
Department of Mathematics and Statistics
Brno, Czech Republic
E-mail: horova@math.muni.cz
URL: https://www.math.muni.cz/~horova/

Journal of Environmental Statistics http://www.jenvstat.org

Volume 4, Issue 2 Submitted: 2012-03-31
February 2013 Accepted: 2012-10-09

http://www.woudc.org
mailto:horova@math.muni.cz
https://www.math.muni.cz/~horova/
http://www.jenvstat.org

	Introduction
	Procedure Development
	Kernel regression model
	Choosing the parameters

	Case study
	Results and discussion

