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Abstract

Applying methods of change-point analysis, a statistical study of the annual mean
precipitation from northern, tropical and southern latitudes of the globe is carried out
based upon data for the past 100 years. The change-point analysis assumes multivariate
Gaussianity for the time-series data, thus allowing spatial correlations between the three
latitudes. Recently developed change detection and change-point estimation methods for
multivariate Gaussian data are applied to analyze the data. A simulation study is also car-
ried out in a bivariate set-up to investigate the robustness of the estimation methodology
for deviation from Gaussianity as well as its sensitivity to estimation of the model param-
eters. Data analysis identifies a significant change in the precipitation from northern and
southern latitudes subsequent to the year 1944, whereas no change was identified in the
data from tropical latitude. The discussion suggests that the change found in the data
from northern and southern latitudes may not have been entirely due to gauge changes
introduced in and around 1950.

Keywords: mean precipitation, change-point analysis, likelihood ratio test, multivariate Gaus-
sian distribution.

1. Introduction

Numerous climatic indicators are used in the literature for tracking changes in the climate,
and some of the commonly used ones are: droughts, moisture surpluses, surface temperatures,
precipitation, to name a few. Of these, surface air temperature and precipitation have been
monitored the longest in time. Hence, recorded data on these variables can be utilized for
detecting possible changes over time (e.g. Karl, Knight, Easterling, and Quayle (1996)). Both
temperature and precipitation directly affect human lives and activities, and the environment.
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Thus, changes in these climatological variables are of immediate concern for scientists and
people alike.

Scientists utilize climate models for purposes of forecasting as well as monitoring climate
changes (e.g. Karl et al. (1996), Smith and Lazo (2001), Evans (2001)). Such scientific
monitoring techniques are important as countries around the globe adapt to projections re-
garding future climatic scenarios. From the perspective of monitoring precipitation over time,
significant changes in precipitation may cause flooding or drought, and this in turn affects
agriculture. Changes in precipitation also affect crop irrigation, soil erosion, and the type of
crops that may grow in a given area. While some countries may benefit, many others will
suffer decreased yields. For these reasons, those who model crop yield and production use
long term precipitation averages as one of the main input variables in their models (Hubbard
and Flores-Mendoza (1995), Perarnaud, Seguin, Malezieux, Deque, and Loustau (2005), Tao,
Yokozawa, Hayashi, and Lin (2005), Evans (2009)).

In this article, the focus is on identifying changes in mean annual precipitation through
recorded data for northern, tropical and southern latitudes of the globe. Past and even recent
studies on precipitation changes have generally focused their analyses on regional or country
specific level data (Gutman, Hosking, and Wallis (1993), Hurrel (1995), Ho, Lee, Ahn, and
Lee (2003), Kripalani, Kulkarni, Sabade, and Khandekar (2003), Koning and Franses (2005),
Buda, Tong, Guoyu, and Zhenghong (2007), Nastos and Zaferos (2007), Goubanova and Li
(2007), Kioutsioukis, Melas, and Zeferos (2009), Choi, Kim, and Byun (2009)). However,
precipitation levels and their effects do not limit themselves to artificial country or regional
boundaries. Taking a global point of view, Giannini, Biasutti, Held, and Sobel (2008) point
out that it is global climate that primarily influences changes in the African climate, and
that African rainfall is affected not just by local natural events and human activities but
through global-scale mechanisms. The researchers point out that one requires both global
as well as local analyses of climate variables to truly comprehend the observed changes in
the environment, what is driving those changes, and how current and future changes should
be managed. Thus, taking global climatic patterns into account is important for a better
understanding of how climate change affects not just smaller regions, but larger areas such
as an entire hemisphere, or even the entire globe. With this objective in mind, this article
analyzes recorded mean annual precipitations within each of northern, tropical and southern
latitudes for the past century in order to identify instances of possible changes that may have
occurred in the past 100 years.

Various approaches are considered in the literature for identifying changes in climatic vari-
ables. First, climatologists and atmospheric scientists base their analysis and conclusions on
a careful understanding of the scientific phenomena, and how climatic variables may change
from a scientific perspective. One, however, awaits empirical evidence in favor of such postu-
lates and often such empirical evidence comes from proper modeling of recorded data. In this
regard, Reeves, Chen, Wang, Lund, and Lu (2007) gives an overview of the most common
change-point detection techniques used in climate literature including the standard normal
homogeneity test, nonparametric SNH test, Akaike’s information criteria, and Sawa’s Bayes
criteria. For example, Gonzalez-Rouco, Jimenez, Quesada, and Valero (2001) use the standard
normal homogeneity test, while Hegerl and North (1997) compare the three statistically opti-
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mal approaches of weighted average, fingerprinting, and filtering for detecting climate change.
A Bayesian approach to fingerprinting technique has been adapted by Berliner, Levine, and
Shea (2000).

Overall, change-point methodology has recently become an important tool for identifying sus-
tained changes in climatic variables (Lund and Reeves (2002), Briggs (2008), Zhao and Chu
(2006), DeGaetano (2006), Easterling and Peterson (1995), Fearly and Sweeny (2005), Rodi-
onov (2004), Jaruskova (1996), Lau and Wu (2007), Wang, Wen, and Wu (2007), Jandhyala,
Liu, and Fotopoulos (2009), Fotopoulos, Jandhyala, and Khapalova (2010)). Change-point
methodology begins with the detection part where one applies change detection statistics to
establish evidence for the presence of one or more changes in a given series. When the presence
of a change-point is confirmed, then one applies an estimation technique in order to estimate
the location of the unknown change-point. The purpose of this article is to pursue changes
in global precipitation in three zones by implementing change-point methodology for Gaus-
sian sequences in a multivariate framework. Most recently, Fotopoulos et al. (2010) derived
an exact computational procedure for estimating an unknown change-point in a multivariate
series. The goal of the present article is to take advantage of this computational procedure
for a comprehensive understanding of the time-periods at which changes in global mean pre-
cipitation may have occurred in the past century. The multivariate approach we take in this
article is quite recent and accounts for spatial relationships that might be present between
the three global zones.

The paper is organized as follows. Section 2 describes the global precipitation data that we
analyze in the paper. Section 3 summarizes change-point methodology including both detec-
tion as well as the maximum likelihood estimation (mle) of an unknown change-point. Since
the methodology assumes the data to be Gaussian and that the data series is time indepen-
dent, one may be concerned about the validity of this assumption for real data. A proper
understanding of the sensitivity of the methodology to deviations from normality could alle-
viate such concerns if the method is found to be quite robust. In this regard, we perform in
Section 4 extensive simulations for the bivariate case, going beyond the univariate sensitivity
studies reported in Fotopoulos et al. (2010), as well as Jandhyala et al. (2009). Section 5
consists of change-point analysis of the global precipitation data. In Section 6, we evaluate
change-point models from the viewpoint of model selection through the AIC criterion and
Section 7 concludes the article with discussion and concluding remarks.

2. Data

The data on annual mean precipitation in mm per day for three latitude bands covering 30%,
40%, and 30% of the global area, which is the central focus of this article, is originally reported
by Mitchell, Carter, Jones, Hulme, and New (2004) and covers the period 1901-2000. The
data is a part of a much larger comprehensive set of high-resolution grid data on monthly
climatic conditions for Europe and the Globe. The dataset covers the major climate zones:
tropical, temperate, and arctic, with the temperate and arctic zones being grouped together.
The Northern Latitudes (NL) band (24◦ N to 90◦ N) covers the regions of North America,
Europe, and Asia. The Low Latitudes (LL) band (24◦ S to 24◦ N) covers the regions of Africa,
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Asia, Australia, Central and South America. Finally, the Southern Latitudes (SL) band (24◦

S to 90◦ S) covers the regions of South America, Africa, Antarctica, and Australia. Figure 1
below displays the time series plot of the data on annual mean precipitation in mm per day
for the years 1901-2000 for the NL, Low and SL bands of the globe.

Before proceeding any further with a discussion on the data and its analysis, we address the
issue of whether the three latitudes (NL, LL and SL) considered above are sensible for study-
ing the dynamic behavior of global precipitation. From the view-point of weather patterns,
the LL latitude represents the tropical zone, whereas the NL latitude represents the northern
temperate and arctic zone, and the SL latitude represents the southern temperate zone. In
this sense, the grouping seems to represent three distinct weather zones at a global level.
Moreover, there is additional discussion in the literature in support of considering these three
zones. The Hadley cell effect, which speaks of air circulating from the tropics (LL zone) to
regions approximately 30◦ north and south latitudes (NL and SL zones), where the air masses
sink seems to have considerable effect on the dynamic behavior of global climate. While the
Hadley cell effect itself is not new in the literature, recently, Stevens (2011) discussed the in-
fluence of Hadley cell effect on global climate. Zhou, Xu, Sud, and Betts (2011) showed more
explicitly that global precipitation is affected by the Hadley cell effect phenomenon. In light
of these observations, it seems natural to consider northern (NL), tropical (LL), and southern
(LL) latitudes (as suggested by the Hadley cell effect) for studying the dynamic behavior of
global precipitation.

The precipitation data in Figure 1 used in this article has not been corrected for gauge bias
either due to under-catch of solid precipitation or periodic instrument changes. It is well
known that correction for global datasets is extremely time intensive and requires data from
individual stations that is not readily available. Since only land data is used, lack of suffi-
cient data on oceans is not a concern in this case. Multiple papers (e.g. Karl, Quayle, and
Groisman (1993), Karl et al. (1996), New, Todd, Hulme, and Jones (2001), Hulme (1995),
Gonzalez-Rouco et al. (2001), Hegerl, Karl, Allen, Bindoff, Gillett, Karoly, Zhang, and Zwiers
(2006)) have mentioned various issues that may arise with precipitation data collected over
the past century. One may refer to Figure 1 of Karl et al. (1993) for gauge changes and
precipitation record discontinuities in different countries over the past 100 years.

When a change-point in a precipitation dataset is detected, one must then enquire whether the
detected change is in the precipitation itself or whether it is due to changes in observational
practices. Many articles have been written on detecting and correcting for artificial mean
shifts in climate data, which may occur due to instrument or station location change, gauge
change, calibration issues, and other reasons as well. Of special concern are “undocumented
shifts”that may have occurred when a station has made changes without documenting them.
Multiple approaches have been taken to locate such shifts, and then to correct for them as
much as possible with given information; this is generally referred to as homogenization of
the climate record, (see Wang (2003), Wang (2008a), Wang (2008b), Menne and Williams
(2005), Sherwood (2007), Gonzalez-Rouco et al. (2001), Hegerl et al. (2006)).
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Figure 1(a) — Northern Latitude (NL) 
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Figure 1:  Annual mean precipitation data for NL, LL, and SL zones of the globe for 
the years 1901-2000.  (a). Precipitation for NL zone.  (b).  Precipitation for LL zone.  
(c).  Precipitation for SL zone.   

Figure 1. Annual mean precipitation data for NL, LL, and SL zones of the globe for the
years 1901-2000. (a) Precipitation for NL zone. (b) Precipitation for LL zone. (c)
Precipitation for SL zone.
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3. Methodology

The statistical methodology we adapt to analyze the data in Figure 1 is referred to as change-
point analysis and consists of two main parts, namely, detection of change-points and then
estimation of change-points including confidence interval estimation. For a comprehensive
overview of the theory on change-point detection and estimation, one may see Csörgö and
Horváth (1997) and Chen and Gupta (2000). Here, we only present details of the method-
ology that is specific to the analysis of the precipitation data. For purposes of analyzing
the data, we assume that the data can be modeled by the multivariate Gaussian family, and
that the data are independent over time. It is also assumed that changes may occur only in
the mean vector with the covariance structure between the three zones remaining stable over
time. Here, we would like to comment regarding the assumption of independence over time.
If one were to look for serial correlations (based on ACF and PACF plots) directly in each
of the three data series, then one does indeed identify autoregressive correlations up to lag 8,
particularly in the NL and SL series. However, these serial correlations disappear once the
change-point model is incorporated. Thus, we believe that the time dependence in the data
series is merely a consequence of not accommodating change-point in the mean of the data
series, and otherwise it is not inherent to the data series itself. In fact, subsequent residual
analysis shows that all the three assumptions including the assumption of independence over
time are indeed appropriate for the data in this study.

We shall first present the method of detecting an unknown change-point in the mean vec-
tor of a multivariate Gaussian series of dimension d (clearly, d = 3 for the data in Figure
1). The likelihood ratio statistic we apply here has been developed in Csörgö and Horváth
(1997). Let the observed d-dimensional data of size n be denoted by Y1, Y2, ..., Yn, n ≥ 1,
wherein we let each observation follow the multivariate Gaussian distribution with mean vec-
tor µ, and covariance matrix Σ. The underlying parameter (µ,Σ) is assumed to begin with
an initial value of (µ1,Σ) and subsequently change to (µ2,Σ), at some unknown index point
τn ∈ {1, 2, ..., n−1}. Asymptotic distribution theory of the generalized likelihood ratio statis-
tic for testing the presence of an unknown change-point τn has been derived in Csörgö and
Horváth (1997). Specifically, the corresponding twice log-likelihood ratio statistic is:

Un = max1≤t≤n−1nlog
(∣∣∣Σ̂n

∣∣∣ / ∣∣∣Σ̂t

∣∣∣) (3.1)

where Σ̂t = n−1
{∑t

i=1 (Yi − µ̂1,t) (Yi − µ̂1,t)T +
∑n

i=t+1 (Yi − µ̂2,t) (Yi − µ̂2,t)T
}
,

µ̂1,t = t−1
∑t

i=1 Yi, µ̂2,t = (n− t)−1
∑n

i=t+1 Yi, t = 1, 2, ..., n. Letting

Wn = (2log log nUn)1/2 −
(

2log log n+
d

2
log log log n− logΓ

(
d

2

))

enables one to find critical values of the statistic in (3.1) via the limiting distribution of Wn:
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limn→∞P [Wn ≤ t] = exp
(
−2e−t

)
. (3.2)

When the above test results in significance, the mle τ̂n of the unknown change-point τn is
obtained as the position at which Un attains its maximum.

Asymptotic distribution of the mle τ̂n can be pursued through the centered estimator given
by ξn = τ̂n − τn. The limiting distribution of ξn denoted by ξ∞ has been recently derived by
Fotopoulos et al. (2010) in a form that is fully computable. We present here only the basic
result, and refer to their paper for details regarding its computational aspects. The required
result for the multivariate case is presented in Section 3.2 in Fotopoulos et al. (2010). As-
suming the model parameters µ1, µ2, Σ to be known, it has been shown that:

P (ξ∞ = k) =

{
(1− ‖G+‖)

(
q|k| − ‖G+‖ q̃|k|

)
k = ±1,±2, ...

(1− ‖G+‖)2 k = 0.
(3.3)

where (1 − ‖G+‖ = exp
{
−
∑∞

j=1
1
j Φ̄
(
η
√
j/2
)}
, η2 = (µ1 − µ2)T Σ−1 (µ1 − µ2), and Φ̄ (·) is

the survival function of the univariate standard normal distribution. Also, qk = E
{
I
(
T−1 > k

)}
,

q̃k = E
{
e−SkI

(
T−1 > k

)}
, k = 1, 2,..., and q0 = q̃0 = 1 where T−1 represents the first time

that a random walk with negative drift becomes negative. Here, assumption of model pa-
rameters being known can be viewed as a limitation, since in practice, the model parameters
have to be estimated from the observed data. However, Hinkley (1972) has shown that the
distribution in (3.3) remains unchanged even when the unknown parameters are replaced by
their estimators. The practical applicability of this result, however, can be cross-validated
through simulations, which we do so in the next section.

For estimating the unknown change-point, one may alternatively implement the conditional
solution of Cobb (1978), which is otherwise known as conditional maximum likelihood esti-
mator (cmle), and we pursue this methodology also in our analysis. This solution is attractive
mainly because it can be viewed as a Bayesian solution to the problem of estimating an un-
known change-point. If δ denotes the number of data points to be considered on either side
of τ̂n , with the belief that the true change-point lies within the δ neighborhood of τ̂n , then
Cobb’s conditional solution is given by

P (ξn = l|Yτ̂n−δ+1, ..., Yτ̂n+δ)
∼= pn (Y ; τ̂n + l) /

δ∑
d=−δ

pn (Y ; τ̂n + l) , l ∈ {−δ, ..., δ} (3.4)
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where pn (Y ; t) denotes the likelihood function of the data series with change-point at t. The
method of choosing δ is detailed in Cobb (1978).

4. Simulations

Here, the main goal is to investigate empirically the robustness of the mle and Cobb’s condi-
tional solution to deviations from Gaussianity. Also, another important goal of this section is
to study empirically the distributional equivalence of the change-point estimate under known
and estimated parameter situations. The simulation study is carried out for various sample
sizes, amounts of changes as well as various locations of the change-point. The univariate
case of this simulation study has been carried out in Jandhyala et al. (2009) as well as Fo-
topoulos et al. (2010) and the results for deviations from Gausianity were quite satisfactory.
It is important to carry out a similar study for higher dimensions because the multivariate
case involves estimation of many more unknown parameters. Thus, the simulation study in
this article addresses the bivariate case, and if the results are satisfactory in the bivariate
case also, one may at that point conclude that the same would continue to hold for three and
higher dimensions. Noting that simulation results for deviations from independence in the
univariate case were not as good (see Jandhyala et al. (2009)), we limit the simulations here
to departures from Gaussianity only.

We formulate departures from bivariate Gaussianity mainly by modeling the error struc-
ture through the standardized bivariate t(ν)-distribution with degrees of freedom chosen
to be ν = 5, 10, 20. As is well-known, the bivariate t(ν)-distribution is defined by scaling
the bivariate standard Gaussian distribution in the denominator with the square root of
an independent univariate chi-square distribution with ν degrees of freedom divided by ν.
The combinations of n and τn (henceforth depicted as τ) we chose in the simulations are:
n = 50, τ = 25;n = 100, τ = 25;n = 100, τ = 50;n = 200, τ = 50;n = 200, τ = 100.
Each of these combinations are run for values of: η = 1.0, 1.5, 2.0, 2.5 . Based upon 100,000
simulations for each case, we compute bias (Bias) and square root of the mean square error
(RMSE) for the empirical distributions of change-point mle and the conditional solution of
Cobb (1978). The results for Bias and RMSE for known η are presented in Table 1 and for
the case of estimated η in Table 2.

Clearly, the results for Bias are extremely satisfactory for both known and unknown cases
uniformly throughout the various parameter choices. The results for RMSE are also extremely
good in the known case (Table 1) throughout the parameters in the sense that the empirical
values are quite close to the corresponding theoretical values even when sample size is 50, and
amount of change η is small. The same is true for the estimated case (Table 2) also, except
when η = 1.0 , in which case, the closeness is marginally good. As in the univariate case
(see Figure 1 in Fotopoulos et al. (2010)), the change-point mle has smaller RMSE values
compared to Cobb’s cmle uniformly under both known and unknown cases.



Journal of Environmental Statistics 9

18 
 

 

Table 1.  Bias and RMSE for the empirical distribution (based on 100000 simulations) of 
change-point mle and cmle for the case of   known. 

n = 50 n = 50

Theor. τ = 150 τ = 100 τ = 75 τ = 50 τ = 25 Theor. τ = 150 τ = 100 τ = 75 τ = 50 τ = 25

mle 0.000 0.014 -0.024 -0.016 -0.011 0.003 5.156 5.167 5.044 4.941 5.088 4.724

cmle 0.000 0.022 -0.018 -0.046 0.008 -0.021 6.200 6.140 5.950 6.141 5.688

mle 0.000 -0.009 0.015 -0.011 -0.003 0.004 2.267 2.241 2.283 2.257 2.214 2.234

cmle 0.000 -0.007 0.012 -0.005 -0.004 0.000 2.738 2.742 2.728 2.709 2.710

mle 0.000 0.009 0.001 -0.008 0.015 0.010 1.246 1.248 1.229 1.250 1.245 1.243

cmle 0.000 0.006 0.003 -0.006 0.011 0.008 1.515 1.507 1.514 1.519 1.505

mle 0.000 0.000 -0.006 0.007 0.006 0.002 0.769 0.757 0.761 0.764 0.768 0.766

cmle 0.000 0.001 -0.003 0.004 0.006 -0.002 0.933 0.930 0.935 0.935 0.936

mle 0.000 -0.007 -0.042 -0.065 0.062 0.014 5.156 5.079 5.126 4.811 5.125 4.651

cmle 0.000 0.000 -0.031 -0.090 0.041 0.016 6.146 6.173 5.899 6.198 5.661

mle 0.000 0.006 -0.007 -0.016 0.001 -0.020 2.267 2.272 2.313 2.239 2.284 2.237

cmle 0.000 0.000 -0.003 -0.008 0.002 -0.020 2.752 2.745 2.744 2.760 2.743

mle 0.000 -0.002 -0.001 -0.004 0.001 0.005 1.246 1.292 1.356 1.274 1.298 1.262

cmle 0.000 -0.005 0.001 0.001 0.006 0.008 1.549 1.548 1.535 1.548 1.533

mle 0.000 0.000 -0.001 0.000 -0.004 -0.007 0.769 0.813 0.818 0.811 0.815 0.813

cmle 0.000 -0.001 0.001 0.000 -0.001 -0.005 0.966 0.969 0.965 0.971 0.964

mle 0.000 0.012 -0.002 -0.046 -0.020 -0.013 5.156 5.063 5.145 4.883 5.071 4.728

cmle 0.000 0.028 0.005 -0.088 -0.020 -0.009 6.151 6.215 5.930 6.145 5.689

mle 0.000 -0.011 0.010 -0.009 0.004 0.006 2.267 2.223 2.246 2.241 2.251 2.218

cmle 0.000 -0.004 0.010 -0.010 0.006 0.001 2.722 2.736 2.722 2.736 2.704

mle 0.000 0.001 -0.005 0.006 0.004 -0.001 1.246 1.255 1.228 1.245 1.232 1.217

cmle 0.000 0.000 -0.003 0.006 0.002 -0.002 1.526 1.501 1.516 1.510 1.497

mle 0.000 -0.003 0.001 0.000 0.000 0.001 0.769 0.771 0.765 0.793 0.783 0.767

cmle 0.000 -0.003 -0.001 0.000 0.001 0.003 0.941 0.934 0.951 0.944 0.937

mle 0.000 -0.029 -0.003 -0.057 0.019 0.036 5.156 5.088 5.055 4.926 4.997 4.743

cmle 0.000 -0.010 0.007 -0.094 0.025 0.015 6.156 6.165 5.945 6.105 5.686

mle 0.000 0.000 0.003 0.002 0.007 0.011 2.267 2.240 2.231 2.249 2.241 2.215

cmle 0.000 0.001 0.001 0.002 0.007 0.006 2.728 2.711 2.740 2.733 2.712

mle 0.000 -0.003 0.013 -0.004 0.003 -0.004 1.246 1.231 1.234 1.236 1.224 1.240

cmle 0.000 0.002 0.009 -0.002 0.002 -0.003 1.506 1.510 1.509 1.496 1.505

mle 0.000 0.002 0.001 0.004 0.004 -0.009 0.769 0.767 0.762 0.765 0.770 0.771

cmle 0.000 0.004 0.002 0.005 0.002 -0.007 0.937 0.934 0.938 0.934 0.938

t 
(1

0)

η = 1.0

η = 1.5

η = 2.0

η = 2.5

ga
us

s

η = 1.0

η = 1.5

η = 2.0

η = 2.5

t 
(5

)

η = 1.0

t(
20

)

η = 1.0

η = 1.5

η = 2.0

η = 2.5

η = 1.5

η = 2.0

η = 2.5

Bias Square root of MSE

n = 200 n  = 100 n  = 200 n  = 100

 

 

 

 

 

 

 

 

Table 1. Bias and RMSE for the empirical distribution (based on 100000 simulations) of
change-point mle and cmle for the case of η known.
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Table 2.  Bias and RMSE for the empirical distribution (based on 100000 simulations) of 
change-point mle and cmle for the case of   unknown.  

 

n = 50 n  = 50

Theor. τ = 150 τ = 100 τ = 75 τ = 50 τ = 25 Theor. τ = 150 τ = 100 τ = 75 τ = 50 τ = 25

mle 0.000 -0.421 -0.033 -1.597 -0.001 -0.042 5.156 7.498 6.254 10.612 7.427 7.516

cmle 0.000 -0.740 -0.027 -2.652 -0.011 -0.048 8.769 7.537 12.284 8.523 7.880

mle 0.000 -0.072 0.022 -0.193 0.002 -0.005 2.267 2.558 2.426 3.131 2.682 3.224

cmle 0.000 -0.122 0.017 -0.310 -0.001 -0.006 3.125 2.986 3.765 3.287 3.782

mle 0.000 -0.009 0.003 -0.054 0.010 0.009 1.246 1.344 1.284 1.444 1.385 1.538

cmle 0.000 -0.030 0.006 -0.087 0.010 0.010 1.635 1.593 1.781 1.703 1.904

mle 0.000 -0.009 -0.006 -0.017 0.007 0.001 0.769 0.790 0.783 0.840 0.812 0.901

cmle 0.000 -0.014 -0.004 -0.028 0.005 -0.001 0.982 0.967 1.044 1.010 1.117

mle 0.000 -0.735 0.002 -2.141 -0.023 0.027 5.156 10.897 7.832 13.028 9.075 8.133

cmle 0.000 -1.084 -0.022 -3.037 -0.040 0.017 11.808 8.821 13.932 9.765 8.280

mle 0.000 -0.080 -0.003 -0.255 -0.005 -0.007 2.267 3.504 3.068 4.524 3.302 3.871

cmle 0.000 -0.134 -0.004 -0.412 0.002 -0.027 3.942 3.494 5.042 3.806 4.256

mle 0.000 -0.022 0.000 -0.066 0.013 0.000 1.246 1.669 1.411 2.163 1.662 1.950

cmle 0.000 -0.044 0.001 -0.101 0.013 -0.001 1.924 1.677 2.409 1.932 2.223

mle 0.000 -0.008 0.008 -0.016 -0.006 -0.002 0.769 0.858 1.136 1.217 0.998 1.154

cmle 0.000 -0.014 0.008 -0.033 -0.005 -0.003 1.029 1.265 1.364 1.158 1.324

mle 0.000 -0.486 -0.003 -1.875 0.004 0.002 5.156 8.053 6.361 11.765 8.038 7.845

cmle 0.000 -0.801 0.001 -2.816 -0.035 -0.040 9.322 7.607 12.888 8.907 8.077

mle 0.000 -0.072 0.008 -0.202 0.017 0.000 2.267 2.517 2.428 3.384 2.731 3.353

cmle 0.000 -0.128 0.014 -0.334 0.008 -0.023 3.110 2.982 4.001 3.325 3.871

mle 0.000 -0.022 -0.003 -0.037 0.001 -0.005 1.246 1.334 1.282 1.417 1.372 1.561

cmle 0.000 -0.037 -0.002 -0.075 -0.001 -0.003 1.641 1.584 1.762 1.699 1.918

mle 0.000 -0.011 0.000 -0.017 0.003 0.000 0.769 0.808 0.786 0.850 0.854 0.890

cmle 0.000 -0.016 -0.002 -0.029 0.001 0.004 0.990 0.968 1.047 1.044 1.111

mle 0.000 -0.456 -0.013 -1.748 -0.005 0.020 5.156 7.520 6.295 11.183 7.559 7.630

cmle 0.000 -0.794 0.007 -2.757 -0.015 -0.002 8.868 7.571 12.581 8.548 7.941

mle 0.000 -0.068 0.003 -0.175 -0.006 0.020 2.267 2.530 2.415 3.210 2.671 3.328

cmle 0.000 -0.124 -0.003 -0.296 -0.001 0.007 3.106 2.950 3.828 3.276 3.863

mle 0.000 -0.018 0.017 -0.051 0.006 0.002 1.246 1.316 1.282 1.437 1.333 1.542

cmle 0.000 -0.031 0.009 -0.080 0.001 0.000 1.626 1.594 1.770 1.670 1.916

mle 0.000 -0.004 0.003 -0.008 0.003 -0.005 0.769 0.798 0.791 0.849 0.813 0.876

cmle 0.000 -0.011 0.002 -0.023 0.001 -0.005 0.990 0.973 1.052 1.014 1.103

t 
(1

0)

η = 1.0

η = 1.5

η = 2.0

η = 2.5

ga
us

s

η = 1.0

η = 1.5

η = 2.0

η = 2.5

t 
(5

)

η = 1.0

η = 1.5

t(
20

)

η = 1.0

η = 1.5

η = 2.0

η = 2.5

η = 2.0

η = 2.5

Bias Square root of MSE

n  = 200 n  = 100 n  = 200 n = 100

 

 

Table 2. Bias and RMSE for the empirical distribution (based on 100000 simulations) of
change-point mle and cmle for the case of η unknown.
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5. Data analysis and results

The goal of this section is to pursue the presence of change-points in the precipitation series
(Figure 1) by applying the change-point methodology discussed in Section 3. To begin ap-
plying the methodology, we assume that the data series for NL, LL, and SL zones follows the
3-dimensional multivariate Gaussian distribution wherein the mean vector may have changed
from an initial value of µ1 to an alternative value of µ2 at some unknown change-point τ , while
the covariance Σ remains constant throughout the sampling period. We then apply the likeli-
hood ratio statistic in (3.1) for detecting the presence of a change-point τ . As we apply (3.1),
we perform detection for every one of the three zones at a univariate level, at a bivariate level
for every pair, and then for all three zones under the 3-dimensional framework. The result-
ing w values for the test statistic, change-point estimates, and p-values are reported in Table 3.
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Table 3.  Test statistics nU  and nW , change-point estimate ̂ , and corresponding p-values  

for the univariate, bivariate , and trivariate models for detecting change  
in mean only in the global annual precipitation series in Figure 1. 

 

Model  nU  nW   p-value 

NL 74.92 12.43 47 0.0000 
SL 36.13 7.81 45 0.0008 
LL 6.60 1.79 46 0.2829 
NL, SL 92.09 13.29 44 0.0000 
NL, LL 89.07 13.02 47 0.0000 
SL, LL 38.83 7.41 45 0.0012 
NL, SL, LL 104.12 14.02 46 0.0000 

 

 

 

Table 4.  Test statistics 
nU  and 

nW , change-point estimate ̂ , and corresponding p-values  

for the univariate, bivariate , and trivariate models for detecting change  
in variance-covariance only in model residuals. 

 

Model  
nU  

nW   p-value 

NL 5.20 1.29 78 0.4240 
SL 1.73 -0.39 13 0.7930 
LL 8.45 2.39 71 0.1681 
NL, SL 5.93 0.44 78 0.7671 
NL, LL 14.85 2.92 71 0.1019 
SL, LL 8.94 1.42 71 0.3850 
NL, SL, LL 17.25 3.63 71 0.0518 

 

 

Table 3. Test statistics Un and Wn, change-point estimate τ̂ , and corresponding p-values for
the univariate, bivariate, and trivariate models for detecting change in mean only in the
global annual precipitation series in Figure 1.

The results in the above table can be used in the sense that if the trivariate model was in-
significant (p-value greater than 0.05), then one ignores the outcome from the bivariate and
univariate models and concludes that no change is present in any of the three variables. On
the other hand, when the trivariate model shows significance, then one looks for evidence
from the bivariate models. In-significance in any of the bivariate models will be indicative of
the fact that the pair involved did not show significant change and thus one does not pursue
the univariate evidence any further for that particular pair. If all the three pairs show signifi-
cance, then one concludes about significance based on the evidence from the three univariate
models. Results in Table 3 show strong evidence for the trivariate and all three of the bivariate
models. Hence, identification of changes in precipitation is based on the evidence from the
three univariate models. Specifically, we find from the univariate models in Table 3 significant
changes in mean precipitations of NL and SL latitudes, but not in the mean precipitation of
the LL latitude.

Before proceeding with estimation of the unknown change-point, we need to perform model
diagnostics that include validation of the three assumptions underlying the model, namely,
multivariate normality, independence, and constancy of the variance-covariance matrix for
the data from the three zones. For purposes of cross-validating the assumptions at the mul-
tivariate level, we utilize the residuals computed from the best fit trivariate model. The
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assumption of multivariate normality was tested through skewness and kurtosis tests (Mardia
(1970)) , as well as a t-test (Henze and Zirkler (1990)), and the corresponding p-values were
0.063, 0.699, and 0.326, respectively. Clearly, there is no indication of violation in multivari-
ate Gaussianity. As for independence over time, we first tested each of the three residual
series from the trivariate model for significance through ACF and PACF plots up to first
twenty lags and found none to be significant. We then computed the cross-correlations for
each pair of residuals and found that they were also not significant. Thus, based on residuals
from the change-point model, there was no indication that the assumption of independence
over time was in violation. Finally, the constancy of variance-covariance structure was ver-
ified by implementing the likelihood ratio change detection statistic that tests for a change
in variance-covariance matrix of the residuals. In this case, the change detection statistic U∗n
and its asymptotic distribution, which is based on W ∗n are analogous to (3.1) and (3.2) and
the exact forms of both U∗n and W ∗n may be derived from Csörgö and Horváth (1997). Here
we report in Table 4 the p-values for test of change in variance based on residuals of each of
the univariate, bivariate and trivariate models.
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 Table 4. Test statistics U∗n and W ∗n , change-point estimate τ̂ , and corresponding p-values for
the univariate, bivariate, and trivariate models for detecting change in variance-covariance
only in model residuals.

Clearly, all p-values in the above table do not provide any significant evidence against the
constancy of the variance-covariance matrix. Thus, all three assumptions of Gaussianity, in-
dependence, and constancy of variance- covariance have been satisfactorily addressed in the
above cross-validation process. We shall now move forward with estimating the unknown
change-point through the model that best describes the change-point in the data.

First, we notice that a significant change has been detected in data from NL and SL zones
whereas no significant change was found in data from the LL zone. Thus, for purposes of
estimating the unknown change-point, we consider the bivariate model that involves NL and
SL zones as our final change-point model. Based on this model, it is clear from Table 3 that
the unknown change-point is estimated as τ̂ = 44. No further changes in the mean were found
in the data from NL and SL zones for the years 1901-1944 (p-value = 0.6776), or in the data
for the years 1945-2000 (p-value = 0.0832). Thus on the basis of the change-point analysis,
the mean vectors before and after the change-point for NL and SL data are estimated as
(1.5009, 1.9116), and (1.5598, 2.0100), respectively. Also, the common mean for the LL data
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is estimated as 4.0493. The variance-covariance matrix for the data from the three zones is
estimated by combining the residuals of the bivariate change-point model for NL and SL,
and the no change model for the LL data. The estimated variance-covariance matrix and the
corresponding correlation matrix for the residuals from NL, LL, and SL are presented below:

 0.0008 −0.0010 −0.0001
−0.0010 0.0149 0.0006
−0.0001 0.0006 0.0057

 ,
 1.0000 −0.2895 −0.0468
−0.2895 1.0000 0.0651
−0.0468 0.0651 1.0000

 .

We shall now compute asymptotic distribution of the change-point mle via (3.3) and also the
conditional solution (cmle) of (Cobb (1978)) via (3.4) for the bivariate change-point model
involving NL and SL data. The computed distributions are presented in Table 5.
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Table 5.  Probability distribution of  in the case of mle, and the corresponding distribution  
for Cobb’s cmle when the normalized amount of change is 48.2 , computed  

from the bivariate change-point model for NL and SL latitudes.  
  

k          mle       cmle 
-10 
-9 
-8 
-7 0.0001 
-6 0.0003 
-5 0.0008 
-4 0.0021 
-3 0.0064 
-2 0.0214 
-1 0.0887 0.0004 
0 0.7631 0.1890 
1 0.0887 0.1754 
2 0.0214 0.1607 
3 0.0064 0.1877 
4 0.0021 0.0717 
5 0.0008 0.0398 
6 0.0003 0.0106 
7 0.0001 0.0623 
8 0.0605 
9 0.0359 

10 0.0032 
11 0.0020 
12 0.0008 
13 
14       

 

 

 

Table 5. Probability distribution of ξ∞ in the case of mle, and the corresponding
distribution for Cobb’s cmle when the normalized amount of change is η = 2.48, computed
from the bivariate change-point model for NL and SL latitudes.

The 96% confidence interval based on the distribution of the mle is obtained as (1943–1946)
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and the same 96% confidence interval based on Cobb’s cmle distribution is given by (1944–
1953). Evidently, the interval based on the mle is far tighter than the one based on the cmle,
and we consider (1943–1946) as our final 96% confidence interval for the change-point in the
precipitation data from NL and SL zones.

Based on the above change-point analysis and the corresponding parameter estimates before
and after the change-point, we find that there has been a significant increase in the mean pre-
cipitation in the NL and SL zones and that this increase has occurred subsequent to the time
period (1943–1946). However, mean precipitation for the LL zone remained steady through-
out the past century. The original data series together with their respective fitted models are
depicted in Figure 2.

In Section 7, we shall discuss possible reasons why a change has been identified in precipita-
tion data from NL and SL zones, whereas no change has been identified from the LL zone,
and some related issues in the next section.

6. Model selection

In this section, we wish to pursue an important question regarding model fitting and model
selection for the data on global precipitation. In Section 5, we pursued change-point analysis
for the data on global precipitation, mainly through the mle. The change-point model was
determined to be appropriate based on cross-validation of the assumptions of normality and
independence over time through residual analysis. Even so, a basic question is, whether the
change-point model is the right choice for the data from the view point of model selection.
This question is relevant because as time series, the data on global precipitation from NL and
SL latitudes exhibit serial correlations as seen through the corresponding ACF and PACF
plots (not presented). Under the circumstances, one may ask why not fit a time series model,
say an ARMA model that is consistent with the behavior of ACF and PACF models. The
next question would then be whether the change-point models proposed in Section 5 for NL
and SL data sets are any better than the corresponding best fit ARMA models? We settle
this question by computing the well known Akaike Information Criterion (AIC) number for
both the change-point and the best fit ARMA models. As is well known, the AIC can be
applied to compare non-nested models and thus, it serves as an excellent tool for choosing an
appropriate parsimonious model.

Since the data from LL (tropical) latitude did not exhibit any serial correlations and even a
change-point was not detected (for this data), in this section, we restrict our attention to the
data from NL and SL latitudes only. For purposes of this section, let the data from northern
latitude be denoted by YN,1, YN,2, ..., YN,10, and correspondingly the data from southern lati-
tude be YS,1, YS,2, ..., YS,10 . The ACF and PACF plots suggest that an autoregressive model
of order 3 (AR (3)) would be most appropriate for both data sets. Omitting all computational
details, the best fit models for NL and SL latitudes were found to be:
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Figure 1(a) — Northern Latitude (NL) 
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Figure 1(b) — Low Latitude (LL) 
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Figure 1(c) — Southern Latitude (SL) 

Figure 2.  Annual mean precipitation data for NL, LL, and SL zones of the 
globe for the years 1901-2000 together with the corresponding fitted change-
point models.  (a). Precipitation for NL zone.  (b).  Precipitation for LL zone.  
(c).  Precipitation for SL zone.   

Figure 2. Annual mean precipitation data for NL, LL, and SL zones of the globe for the
years 1901-2000 together with the corresponding fitted changepoint models. (a)
Precipitation for NL zone. (b) Precipitation for LL zone. (c) Precipitation for SL zone.
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YN,i = 0.4173YN,i−1 − 0.0256YN,i−2 + 0.4095YN,i−3 + εN,i, i = 4, 5, ...100, (6.1)

YS,i = 0.2416YS,i−1 − 0.1422YS,i−2 + 0.2948YS,i−3 + εS,i, i = 4, 5, ...100. (6.2)

Once again, omitting all computational details, we provide below the AIC numbers directly
for the two models above as well as for the corresponding change-point models with the
change-point estimated as τ̂ = 44 for both northern and southern latitudes.

AIC number for AR(3) model for NL data: −681 · 387
AIC number for change-point model for NL data: −692 · 837
AIC number for AR(3) model for SL data: −502 · 051
AIC number for change-point model for NL data: −512 · 575

Since one chooses the model with lowest AIC number, the above AIC numbers clearly suggest
that in both NL and SL cases, the change-point model is the preferred model over the AR(3)
model. Thus, the above analysis removes any ambiguity regarding the relevance of change-
point model over the autoregressive model as a suitable way of modeling and analyzing the
data on precipitation from and NL and SL latitudes.

7. Discussion and concluding remarks

This article implements a formal statistical analysis of the data on mean annual precipitation
for NL, LL, and SL zones by adapting the statistical methodology of change-point analysis.
The methodology enabled us to identify time instances subsequent to which significant and
persistent changes have occurred in the precipitation over time. In particular, the analysis
identified a significant increase in the global annual mean precipitation in the NL and SL
zones, whereas, it remained steady throughout the past century at the LL latitudes. The 96%
confidence interval for the change-point based on the distribution of the mle is found to be
(1943–1946). The objective of this section is to review climatological literature that may be
supportive of what we find through our analysis. We shall also provide some possible reasons
that may have led to significant change in the precipitation in the NL and SL zones, but no
change in the LL zone.

An excellent overview on climate trends and climate change in global as well as regional data
may be found in (Dore (2005)). As per the precipitation record and the dataset used in this
paper, this article reports that mean annual land precipitation has increased within the past
century, even though the increase was not uniform in space and time. Some areas became
drier, while others became wetter over various periods of time. The Southern and Northern
hemispheres showed increased precipitation, as do the high latitudes. A precipitation increase
has also been noted by several other authors. For example, Lau and Wu (2007) report that
there has been an increase in precipitation since the 1950s in high latitudes, covering both
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the NL and SL bands. New et al. (2001) state that global land precipitation has gone up over
the past century, with a peak noted in 1950-1960s. They observed that a large part of the
increase in precipitation in the Northern Hemisphere may be due to an improved measuring
gauge introduced in the 1950s. Also, New et al. (2001) state that in the 40-60◦S (part of SL
band), below average precipitation was observed before the 1930s, which was then followed by
above average precipitation in the period 1930-1960s. In their regional survey on precipitation
from New Zealand (part of the SL band), Plummer, Salinger, Nicholls, Suppiah, Hennessy,
Leighton, Trewin, Page, and Lough (1999) assert that serious droughts were observed in the
period from 1920-1951 than the following 30 year period. Below normal precipitation in the
1920-1940s was reported by Qian and Zhu (2001).

Overall, we learn from Dore (2005) that there has been an increase in mean precipitation
around 1950 in the Canadian prairies, northern Europe, and west China. In the Southern
Hemisphere, Australia experienced a decrease in precipitation in some regions and increased
precipitation in others, while Argentina has been experiencing a positive trend in precipita-
tion throughout the past century. On the other hand, parts of Africa have suffered severe
droughts in the latter half of the century in contrast to the increases in precipitation noticed
elsewhere. In the tropics and sub-tropics no overall trend has been detected thus far.

There may be other reasons why we did not detect a change in the mean tropical precipita-
tion. First, a large part of the tropics is water and our dataset is based on land precipitation
data only. Second, according to New et al. (2001), the LL band covers areas where precipita-
tion has increased and areas where precipitation has decreased. For example, there are some
indications that in the 20-40◦ S band the precipitation has increased, but in the 10◦ N/S to
20◦ N/S bands precipitation has decreased. It may be that those changes cancelled each other
out and thus no overall change is detected in the aggregated dataset.
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