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Abstract

Changes in temperature and rainfall will lead to frequent occurrence of floods, droughts
as well as heat and cold waves. In this paper we introduce a new generalized counting
process with Gumbel inter-arrival time distribution. This count model can be applied
to analyze the climate variability due to the changes in temperature and rainfall. The
decreasing hazard function of the new model leads to over dispersion, whereas increasing
hazard function leads to underdispersion. Thus this new Gumbel count model can model
both over and under dispersed count data. The new model has many nice features such
as its closed form nature, computational simplicity, ability to nest Poisson, existence of
moments etc. The use of the model is illustrated in two applications with respect to a data
on the monthly rainfall of Kerala, the southern state of India which crossed the extreme
level during 2005-2008 (under dispersed) and the data on the daily temperature in Kerala
which attained the maximum level in Kerala during 2005-2008 (over dispersed).

Keywords: Inter-arrival times, Gumbel distribution, counting process, hazard function, over
dispersion, under dispersion.

1. Introduction

The untimely rain in Kerala, which hit the entire region has caused crop damage and flooding.
It is estimated that farmers could not harvest paddy worth about Rs.128 crores(1280 million
rupees) due to unexpected flooding in the Kuttanad fields extending to 2000 hectares which
is quite unusual with the normal summer rain. Experts suggest that this untimely rain is a
clear evidence of climate change.

In a report in the news daily, The Hindu, it is noted that the “abrupt changes in precipitation
and temperature are the main characteristics of climate change. Rising global temperatures
will bring changes in weather patterns, rising sea levels and increased frequency and intensity
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of extreme weather”. The summer rain usually comes to the state as a relief to the inhabitants
in the month of March and April as it may ease the water shortage. Unlike in temperature
trends, rainfall trends are uncertain at several locations see (Kumar et al. 2002, Krishnakumar
et al. 2008 and 2009, Rao et al., 2008). It is also a matter of concern that the untimely rain
may cause an outbreak of infectious diseases. The state had witnessed infectious diseases in
the last few years during rainy season, particularly with Chickungunya and Dengue fever.
There had been reports of jaundice attack at many places in the state.( Miguel et al. 2008)
studied the influence of temperature and rainfall on the evolution of cholera epidemics in
Lusaka, Zambia, 2003-2006. (Pascual et al. 2002) analyzed the quantitative evidence on
cholera and climate and (Michael et al. 2008) studied the seasonality of cholera from 1974
to 2005. As this is a clear indication of climate change, both the government and the people
must be vigilant to cop up with untimely eventualities which may be a regular phenomenon in
the coming years. To study the climate change it is necessary to know the pattern of changes
in the level of temperature and rainfall at different time points. Here we take the series of
time points which crosses the extreme temperature as well as rainfall . Then by using this
time series we developed count models to predict the future climate change.

There is a straight forward connection between the count model and a timing process. But
out of many of the count models that have been developed over the years, (see Wimmer
and Altman, 1999), very few share this relationship. Poisson count model is truly valid only
in the case where the data of interest support the restrictive assumptions of equi-dispersion
(i.e., the mean and variance of the data are equal). Statisticians recognized this limitation
for many years and now use models that admits over dispersion (i.e., the data sets marked
by a fatter, longer right tail than the Poisson can accommodate). A heterogeneous Gamma-
Poisson(Negative binomial) model is the first count model invoked for this common situation.
Next problem is how to accommodate the data sets with under dispersion. Statisticians have
acknowledged and addressed this issue in different ways (see King, 1989; Cameron and Johans-
son, 1997; Trivedi and Cameron, 1996). But with the possible exception of a count model
featuring gamma distributed inter arrival times (see Winklemann, 1995a,b), none of these
under dispersed count models offers the conceptual elegance and usefulness of the Poisson
exponential connection.

An important entity for the analysis of durations, used to capture duration dependence is
the hazard rate h(t) which gives the instantaneous exit probability conditional on survival.

Hence we consider, h(t) = f(t)
1−F (t) = d

dt logF (t) where f(t) and F(t) are the density function and
cumulative distribution function of the inter arrival time respectively. The hazard function
captures the underlying time dependence of the process. A decreasing hazard function implies
that the waiting time is less likely to end the longer it lasts. This situation is referred to as
negative duration dependence. An increasing hazard function implies that the waiting time
is more likely to end the longer it lasts. This situation is referred to as positive duration
dependence. No duration dependence corresponds to the case of a con stant hazard. The
hazard is a constant if and only if the distribution of waiting times is exponential.

We assume that the waiting times between the events are independent but not exponential
(which would lead to the Poisson distribution for counts). Instead they follow some other
distribution with a nonconstant hazard function. If the hazard function is a decreasing func-
tion of time, the distribution displays negative duration dependence. If the hazard function
is an increasing function of time, the distribution displays positive duration dependence. In
both cases, the conditional probability of a current occurrence depends on the time since the
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last occurrence rather than on the number of previous events. Events are dependent in the
sense that the occurrence of at least one event (in contrast to none) up to time t influences
the probability of a further occurrence in t+ ∆t.

There is a link between duration dependence and dispersion. If we denote the mean of
the interarrival distribution by µ, the variance by σ,2 then we say that the distribution has
negative duration dependence if d

dth(t) < 0 and positive duration dependence if d
dth(t) > 0. If

the hazard function is monotonic, then we have if d
dth(t) > 0, then σ

µ < 1; if d
dth(t) = 0, then

σ
µ = 1; if d

dth(t) < 0, then σ
µ > 1, (see Bradlow et. al, 2002). These three cases correspond to

count data characterized by under dispersion, equi dispersion and over dispersion respectively.
It is shown that negative duration dependence (asymptotically) causes over-dispersion and
positive duration dependence causes under-dispersion. The Poisson process can be taken
as a sequence of independently and identically exponentially distributed waiting times (see
Cox, 1972) . To derive a generalized model we replace the exponential distribution with
a less restrictive non negative distribution. Possible candidates known from the duration
literature are the Weibull (see McShane et.al, 2008), the gamma(including generalized gamma)
(see Winkelmannn, 1995a,b, 2008), and the log normal distributions (see Bradlow et. al,
2002; Everson and Bradlow, 2002; Miller et al., 2006). Both Weibull and gamma nest the
exponential distribution and both allow for a monotone hazard rate function that is duration
dependent. Recently some authors developed (see Jose and Bindu, 2011) a count model with
Mittag-Leffler inter-arrival time distribution.

In this paper we replace the exponential distribution by Type II Gumbel distribution where
Weibull and Frechet are the special cases. A corresponding count model is formulated which
nest Poisson process as a special case. The Gumbel inter arrival time model is richer than the
exponential, because it allows for nonconstant hazard rates (duration dependence). We can
derive the model by using a polynomial expansion.The remainder of this article is as follows.
In section 2, a description about Type II Gumbel distribution is given. Section 3 contains the
derivation of the Type II Gumbel count model, focusing on the polynomial expansion that
leads to the closed form benefits and its prperties. In section 4 the Gumbel count model is
used in two real applications in climate data.

2. Gumbel Distribution

The Gumbel distribution was first developed by a German mathematician Emil Gumbel (1891-
1966). Gumbel’s focus was primarily on applications of extreme value theory to engineering
problems, in particular modeling of meteorological phenomena such as annual flood flows.
The Gumbel distribution, also known as the Extreme Value Type I distribution, is unbounded
(defined on the entire real axis). The cumulative distribution function is

F (x; a, b) = 1− e−bx−a
.

The moments E[Xk] exist for k < a. We can define Type II Gumbel distribution, as one
whose cumulative distribution function [c.d.f] has the polynomial expansion of the form

F (x; a, b) =
∞∑
j=1

(−1)j+1(bx−a)j

Γ(j + 1)
(1)
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and p.d.f is given by

f(x; a, b) =
∞∑
j=1

(−1)j+1(−a)jbj(x−aj−1)

Γ(j + 1)
. (2)

The type II Gumbel distribution admits a closed form expression for the hazard function as

h(t) =
f(t)

1− F (t)
= −abx−a−1.

Figure 1
Hazard rate of Type II Gumbel distribution for different values of a and b=0.7.

which is monotonically increasing for a < −1, monotonically decreasing for a > −1, and
constant when a = −1. Figure 1 supports this intuitive fact.

Gumbel has shown that the maximum value (or first order statistic) in a sample of a random
variable following an exponential distribution approaches closer and closer to the Gumbel
distribution with increasing sample size. In hydrology, therefore, the Gumbel distribution is
used to analyze such variables as monthly and annual maximum values of daily rainfall and
river discharge volumes.

3. Gumbel count model

Let Yn be the time from the measurement origin at which the nthevent occurs. Let X(t) denote
the number of events that have occurred upto time t. The relationship between interarrival
times and the number of events is

Yn ≤ t ⇔ X(t) ≥ n.

We can derive the type II Gumbel count model by using the following relationship

Gn(t) = P [X(t) = n] = P [X(t) ≥ n]− P [X(t) ≥ n+ 1]
= P [Yn ≤ t]− P [Yn+1 ≤ t].

(3)

If we let the cumulative density function(cdf) of Yn be Fn(t) then,

Gn(t) = P [X(t) = n] = Fn(t)− Fn+1(t). (4)
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In the case where the measurement time origin (and thus counting process) coincides with
the occurrence of an event, Fn(t) is simply the n-fold convolution of the common interarrival
time distribution which may or may not have a closed form solution. Based upon (3) we can
derive our Type 2 Gumbel count model using the polynomial expansion of F(t).

Gn(t) =

∫ t

0
Fn−1(t− s)f(s)ds−

∫ t

0
Fn(t− s)f(s)ds =

∫ t

0
Gn−1(t− s)f(s)ds. (5)

Before proceeding to develop the general solution to the problem, we note that F0(t) is 1 and
F1(t) = F (t) for every t. Therefore we have

G0(t) = F0(t)− F1(t) = 1− F (t) = e−bx
−a

=
∞∑
j=0

[
(−1)j(bx−a)j

Γ(j + 1)

]
. (6)

By equation (5) we can derive

G1(t) =

∫ t

0
G0(t− s)f(s)ds

=

∫ t

0

 ∞∑
j=0

(−1)j(b(t− s)−a)j

Γ(j + 1)

× ( ∞∑
k=1

(−1)k+1 − akbks−ak−1

Γ(k + 1)

)
ds

=
∞∑
j=0

∞∑
k=1

(−1)j(−1)k+1bjbk

Γ(j + 1)Γ(k + 1)

∫ t

0
−ak(t− s)−ajs−ak−1ds

=
∞∑
j=0

∞∑
k=1

(−1)j(−1)k+1bjbk

Γ(j + 1)Γ(k + 1)
× t−akt−ajΓ(−aj + 1)Γ(−ak + 1)

Γ(−ak +−aj + 1)
.

Then by using a change of variables m=j and l=m+k we obtain

G1(t) =
∞∑
l=1

(
l−1∑
m=0

(−1)m(−1)l−m+1bmbl−m

Γ(m+ 1)Γ(l −m+ 1)
× t−a(l−m)t−amΓ(−am+ 1)Γ(−a(l −m) + 1)

Γ(−a(l −m)− am+ 1)

)

=
∞∑
l=1

(
l−1∑
m=0

(−1)l+1(bt−a)lΓ(−am+ 1)Γ(−al + am+ 1)

Γ(m+ 1)Γ(l −m+ 1)Γ(−al + 1)

)

=
∞∑
l=1

(−1)l+1(bt−a)

Γ(−al + 1)

(
l−1∑
m=0

Γ(−am+ 1)Γ(−al + am+ 1)

Γ(m+ 1)Γ(l −m+ 1)

)

=
∞∑
l=1

(−1)l+1(bt−a)δlm
Γ(−al + 1)

, where δlm =
l−1∑
m=0

Γ(−am+ 1)Γ(−al + am+ 1)

Γ(m+ 1)Γ(l −m+ 1)
.

Similarly G2(t) =
∞∑
l=2

(−1)l+2(bt−a)δ2l
Γ(−al + 1)

.
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We use the method of mathematical induction to derive Gn(t). Thus we have

Gn(t) =
∞∑
l=n

(−1)l+n(bt−a)δnl
Γ(−al + 1)

.

Gn+1(t) =

∫ t

0
Gn(t− s)f(s)ds

=

∫ t

0

 ∞∑
j=n

(−1)j+n(bt−a)δnj
Γ(−aj + 1)

× ( ∞∑
k=1

(−1)k+1 − akbks−ak−1

Γ(k + 1)

)
ds

=
∞∑
j=n

∞∑
k=1

(−1)j+n(−1)k+1bjbkδnj
Γ(−aj + 1)Γ(k + 1)

× t−akt−ajΓ(−aj + 1)Γ(−ak + 1)

Γ(−ak +−aj + 1)

=
∞∑

l=n+1

(−1)l+n+1(bt−a)l

Γ(−al + 1)

(
l−1∑
m=n

δnm
Γ(−al + am+ 1)

Γ(l −m+ 1)

)

=
∞∑

l=n+1

(−1)l+n(bt−a)lδn+1
l

Γ(−al + 1)
, where δn+1

l =
l−1∑
m=n

δnm
Γ(−al + am+ 1)

Γ(l −m+ 1)
.

Theorem 3.1 If the interarrival times are independently and identically distributed as Type
II Gumbel distribution, then the count model probabilities are given by

Gn(t) = P [X(t) = n] =
∞∑
j=n

(−1)j+n(bt−a)jδnj
Γ(−aj + 1)

, a < 0, n = 0, 1, 2... (7)

where δ0j =
Γ(−aj + 1)

Γ(j + 1)
, j = 0, 1, 2, ...

and δn+1
j =

j−1∑
m=n

δnm
Γ(−aj + am+ 1)

Γ(j −m+ 1)
, for n = 0, 1, 2...for j = n+ 1, n+ 2, n+ 3, ...

3.1. Characteristics of the Gumbel count model

1. The model handles both over-dispersed and under-dispersed data

Through extensive simulations we have verified that the hazard function of the Type
II Gumbel distribution is a decreasing function of time when a > −1, so that the dis-
tribution displays negative duration dependence which causes over-dispersion, whereas
a < −1 the hazard function is monotonically increasing function of time, so that the dis-
tribution displays positive duration dependence which causes under-dispersion. A lack
of duration dependence occurs when a = −1 which leads to the Poisson distribution
with equal mean and variance.
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Figure 2
Probability histogram of Type II Gumbel count model (a = −1.5) and Poisson model

(λ=2) displaying under-dispersion.

Figures 2 and 3 display probability histograms for the Type II Gumbel and Poisson
models with different parameter values. Both the Gumbel and Poisson have identical
means, but their dispersion is quite different. In Figure 2, probability histogram for an
under-dispersed Type II Gumbel count model with parameters a = −1.5 and b = 1.845
and a Poisson with λ = 2. The variance of the Gumbel count model in this case is
0.388 which is smaller than the mean, as expected. In Figure 3, we have the probability
histogram for an over-dispersed Type II Gumbel count model with parameters a = −0.5
and b = 0.89, and again follow the Poisson with λ = 2. The variance of the Gumbel
count model in this case is 2.17 which is greater than the mean, as expected.

Figure 3
Probability histogram of Type II Gumbel count model (a = −0.5) and Poisson model

(λ=2) displaying over-dispersion.
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2. The model generalizes the most commonly used model such as the Poisson as special
case when t = 1 and a = −1. Then

Gn(t) = P (X(t) = n) =
∞∑
j=n

(−1)j+nbjδnj
Γ(j + 1)

.

This is a Poisson process with unit rate.

3. The mean and variance of the Type II Gumbel count model exist,when a < 0

Mean = E[X(t)] =
∞∑
n=1

∞∑
j=1

n
(−1)j+n(bt−a)jδnj

Γ(−aj + 1)
.

Variance = V ar[X(t)] =
∞∑
n=1

∞∑
j=1

n2
(−1)j+n(bt−a)jδnj

Γ(−aj + 1)
−

 ∞∑
n=1

∞∑
j=1

n
(−1)j+n(bt−a)jδnj

Γ(−aj + 1)

2

.

Table 1
Values of probabilities, mean and variance of the Type II Gumbel count model for

different values of the parameter a when b=0.7 at t=1

a G0(t) G1(t) G2(t) G3(t) G4(t) G5(t) · · · µ σ2 relation
-2 0.6999 0.4722 0.0700 0.0035 0.0004 0.0001 · · · 0.6230 0.3969 under dispersion

-1.75 0.6350 0.4531 0.0899 0.0069 0.0003 0.0000 · · · 0.6548 0.4509 under dispersion
-1.5 0.5728 0.4262 0.1127 0.0132 0.0009 0.0000 · · · 0.6950 0.5285 under dispersion
-1.25 0.5218 0.3913 0.1364 0.0240 0.0028 0.0002 · · · 0.7487 0.6439 under dispersion
-1 0.4903 0.3516 0.1578 0.0413 0.0077 0.0011 · · · 0.8282 0.8246 equi dispersion

-0.75 0.4826 0.3136 0.1733 0.0651 0.0191 0.0047 · · · 0.9614 1.1273 overdispersion
-0.5 0.4966 0.2857 0.1821 0.0931 0.0409 0.0160 · · · 1.2074 1.6556 overdispersion
-0.25 0.5259 0.2745 0.1884 0.1202 0.0725 0.0417 · · · 1.6490 2.4248 overdispersion
-0.1 0.5483 0.2776 0.1938 0.1334 0.0906 0.0609 · · · 1.9758 2.7823 overdispersion

Table 1 gives the probabilities of Type II Gumbel count model for different values of
the parameter a when b = 0.7. By simulation of the Type II Gumbel count model
we verified that for a > −1, the conditional variance exceeds conditional expectation
which represents the over-dispersion and for a < −1, the conditional expectation exceeds
conditional variance which represents the under-dispersion but for a = −1 conditional
mean equals conditional variance which means the equi-dispersion. Thus Type II Gum-
bel count model can be used to represent overdispersed, under-dispersion as well as
equidispersed real data. Table 1 supports this intuitive fact.

4. If the inter arrival times of the data set are Type II Gumbel distributed then, we have
a corresponding counting model to use. The model (7) is derived from Type II Gumbel
timing model, the link between the timing model and its counting model equivalent is
maintained. Hence in those cases where an analysis of the inter-arrival times suggests
that a more flexible timing model is needed, it can now be incorporated via its count
model equivalent. Furthermore, in those cases where one only has count data, but would
like to make forecasts of the next arrival time, this can be done given the timing and
count model link that is now achieved.

5. We can simulate the Type II Gumbel count model. The model is computationally feasi-
ble to work with and it is estimable without requiring a formal programming language
or time consuming simulation based methods.
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4. Application to the real data sets

Although Kerala lies close to the equator, its proximity with the sea and the presence of the
fort like Western Ghats, provides it with an equable climate which varies little from season
to season. The temperature varies from 280 to 320C. Southwest Monsoon and Retreating
Monsoon ( Northeast Monsoon ) are the main rainy seasons. The thermo-sensitive crops
like black pepper, cardamom, tea, coffee and cocoa will be badly accepted as temperature
range (the difference between maximum and minimum temperatures) is likely to increase and
rainfall is likely to decline.

Figure 4
The location of Kerala

4.1. Monthly Rainfall Data in Kerala(Under dispersed case)

In this section we apply the model to a data on the monthly rainfall of Kerala which crosses the
extreme level. The data collected concern monthly distribution of Normal and Actual rainfall
of Kerala state in India from 1994-2003. The total annual rainfall in the state varies from
360cm over the extreme northern parts to about 180cm in the southern parts. The southwest
monsoon (June to October) is the principal rainy season in the state. The thunderstorm rains
in the pre monsoon months of April and May and that of monsoon months are locally known
as ‘Edavapathi ’. Rainfall during northeast monsoon season is known as ‘Thulavarsham’ in
local language. The southwest monsoon sets over the southern parts of the State by about 1st

June and extends over the entire State by 5th June. June and July are the rainiest months,
each accounting individually to about 23 of annual rainfall. In each of these months number
of rainy days (with daily rainfall of at least 2.5 mm) varies from 27 in the north to 15 in the
south.

The time interval between the months having extreme rainfall had the conditional mean
1.5217 and conditional variance 1.3662. Thus the data set is underdispersed and hence we
can apply the Gumbel count model with estimates of parameters â = −1 and b̂ = 0.4450.
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To test whether there is significant difference between an observed interarrival time distri-
bution and the Gumbel distribution we use Kolmogorov-Smirnov [K.S] test for H0 : Gumbel
distribution with parameter a = −1 and b = 0.4450 is a good fit for the given data. Here the
calculated value of the K.S. test statistic is 0.0869 and the critical value corresponding to the
significance level 0.01 is 0.2403 showing that the Gumbel assumption for inter arrival times
is valid.

To estimate the number of months having extreme rainfall in a class, we use the Gumbel Count
model. The Figure 5 shows that the Gumbel count model can be applied to underdispersed
data.

Figure 5
Probability histogram of the expected number of months having extreme rainfall in Kerala

during 1994-2003 according to Gumbel count model and Poisson model

4.2. Data on Maximum Temperature in Kerala (Over dispersed data)

In this section we apply the model to a data on the daily maximum temperature which
attains extreme during 2005-2008 in Kerala. The data collected is from the meteorological
observations recorded at Kayamkulam station during the period 2005-2008.

Day temperatures are more or less uniform over the plains throughout the year except during
monsoon months when these temperatures drop down by about 3 to 50C. Both day and night
temperatures are lower over the plateau and at high level stations than over the plain. Day
temperatures of coastal places are less than those of interior places. March is the hottest
month with a mean maximum temperature of about 330C. Mean maximum temperature is
minimum in the month of July when the State receives plenty of rainfall and the sky is heavily
clouded. It is 28.50C for the State as a whole in July, varying from about 280C in the north
to about 290C in the South. The night temperature is minimum in January when clouding is
also minimum. For the State as a whole it is about 22.50 C in January, varying from 220C in
the north to 22.60C in the South). The time interval between (interarrival) the days having
maximum temperature had the conditional mean 1.7553 and the conditional variance 6.2178.
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Thus the data set is overdispersed, and hence we can apply the Gumbel Count model with
estimates of parameters â = −0.93 and b̂ = 0.5950.

To test whether there is significant difference between an observed interarrival time distribu-
tion and the Gumbel distribution, we use Kolmogorov-Smirnov [K.S] test for H0 : Gumbel
distribution with parameters a = −0.93 and b = 0.5950 is a good fit for the given data. Here
the calculated value of the K.S. test statistic is 0.1711 and the critical value corresponding
to the significance level 0.01 is 0.1869 showing that the Gumbel assumption for inter arrival
times is valid.

To estimate the number of days having maximum temperature in a class, we use the Gumbel
Count model. The Figure 6 shows that the Gumbel count model can be applied to overdis-
persed data.

Figure 6
Probability histogram of the expected number of days having maximum temperature in

Kerala during 2005-2008 according to Gumbel count model and Poisson model

5. Conclusions

In this article we have introduced a new count model based upon Gumbel inter arrival time
process. More importantly, the model provided a sizeable improvement over the more tradi-
tional Poisson. The new model can be used to predict the extreme changes in temperature
and rainfall which causes the climate change. One important advantage of the new model is
that it removed the artificial symmetry between overdispersion and equidispersion, a violation
of the constant hazard assumption underlying the Poisson model. This new model can be
treated as a generalization of the Poisson distribution. The new model has closed form nature
and computation is possible using Matlab. This new model can be applied to real data sets
where the assumption of equidispersion is violated.
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