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Abstract

We prove a characterization of Pareto variable based on quantiles when conditional
distribution above a threshold is considered. A similar characterization for exponential
distribution is also obtained. The results are extended to discretized random variables.
For some well known distributions, effect of conditioning the variable crossing a threshold
on quantiles is investigated. The results are further extended to bivariate exponential and
bivariate Pareto type models which are relevant to explain lifestyle data. Applications of
the results are made in estimation of conditional quantiles in environmental data. Pareto
model for excess of flood-peaks of a river seems to be satisfactory with high threshold
values. Applications are also made on Yam-yield, wind speed data of high energy due to
extratropical cyclones in coastal regions and worldwide earth-tremor data.
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1. Introduction

Pareto distribution and its variants have wide applications in modeling different branches of
science, especially economics. Apart from explaining the distribution of wealth or income,
this distribution may explain observed phenomena in sociology, anthropology, hydrology, me-
teorology, actuarial science, occupational health and safety etc.
See e.g., Cebrian, Denuit, and Lambert (2003), Dasgupta (2011), Jenkinson (1955),
Klass, Biham, Levy, Malcai, and Soloman (2006), Krishnaji (1970),
de Oliveira, Ebecken, de Oliveira, and Gilleland (2011),
Morrow-Tlucak, Emhart, Sokol, Martier, and Ager (1989), Van Montfort and Witter (1985).

In this paper we prove a characterization of Pareto distribution based on quantiles when the
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variable exceeds a threshold. Comparisons are made between the unrestricted quantiles of
original variable, and restricted quantiles for the variable above a threshold. The relationship
of constant ratio of unrestricted and restricted quantiles of variable beyond a threshold is seen
to characterize the Pareto distribution. The proof involves solving functional equations, like
Cauchy functional equation, over a restricted zone. A similar characterization based on con-
stant shift of restricted quantiles from unrestricted quantiles is proved for exponential random
variable. The results are generalized for discretized version of the random variables. Effect
of conditioning the variable above a threshold on quantiles is discussed for some well known
distributions including normal distribution. The case when underreporting of a variable is of
exponential order that seems realistic in some specific situations is also studied. We further
study the conditional quantiles to obtain relevant characterizations for bivariate exponential
and bivariate Pareto type models those are useful in explaining lifestyle data. Applications
of the results are made in different contexts including environmental data.

In section 2 we prove the results for Pareto distributions and exponential distributions. Sim-
ilar characterizations for discrete random variables are proved in section 3. In section 4 we
obtain results for bivariate exponential and bivariate Pareto type distributions. Section 5
discusses applications of the results in agricultural data of yam yield, environmental data
on flood-peak, earth-tremor and peak gust (PGU) wind velocity. The value of median PGU
exceeding the recorded maximum is estimated based on unrestricted median and recorded
maximum peak gust, thus providing a glimpse of the scenario beyond observed range.

2. Characterization of Pareto and exponential distribution

We first prove the following.

Theorem 1. Let X be a random variable with support (a,∞), a > 0, and distribution func-
tion F. Denote c = c(p) to be the unrestricted p-th quantile of X(> a), and consider p in
a (small) dense neighborhood A0 of origin (e.g., p ∈ A0 = (0, ε) ∩ Q, ε > 0, small and Q is
the set of rational numbers). Then the p-th quantile of the distribution, p ∈ A0, under the
restriction X > x0(> a) is cx0/a iff F is a Pareto distribution function.

Proof. Consider the distribution function of standardised Pareto variable with a = 1.

F (x) = 1− x−α, x > 1, α > 0 ...(2.1)

The median of the distribution is at 21/α. Denote F = 1 − F, g(x) = logF (x) = −α log x ↓
−∞, x ↑ ∞. The c.d.f. of the variable, given that x > xo(> 1), then turns out to be

F (x)/F (x0), and one may write P (X > x|X > x0) =
F (x)

F (x0)
= ( x

xo
)−α. Equating this to 0.5

we obtain the new median of the random variable crossing the threshold x0 as cx0, where
c = 21/α is the median of the random variable X(> 1).
This property specifies the form of the distribution at the points c, c2, · · · , cm, · · · as explained
below.
For a general distribution function F = F (x) of the random variable X > 1, denote g(x) =
logF (x) = log(1− F (x)). Suppose that the new median of the random variable X under the
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restriction x > x0 is at cx0, where c is independent of x0. Indeed c is the median of original
unrestricted random variable as seen by taking x0 ↓ 1. Next, write

eg(cx0)−g(x0) =
F (cx0)

F (x0)
= 0.5 ...(2.2)

This provides,
g(cx0)− g(x0) = −k ...(2.3)

where, k = log 2.
Thus g(c2) = g(c) − k = −2k, g(c3) = −3k, · · · , g(cm) = −mk. This implies the type of the
distribution function is Pareto, g(x) = logF (x) = −α log x; where α = k/(log c) at the points
x = c, c2, · · · , cm, · · ·

Note that a similar relation holds for the third quartile of the Pareto distribution (2.1) with
c = 41/α, k = log 4.

Thus equations (2.2)-(2.3) for third quartile of a general F imply Pareto distribution for some
other points x = c, c2, · · · , cm, · · · with a different choice of c.
Now assume that the above property of constant multiple factor of restricted and unrestricted
quantiles holds for a dense set of quantiles corresponding to p ∈ (0, 1), p rational. The form
of difference equation then reduces to

g(cx0)− g(x0) = log(1− p) = −k ...(2.4)

k = − log(1− p) > 0, c = (1− p)−1/α; p ∈ Q ∩ (0, 1).

This specifies the distribution function F to be Pareto in a dense set x = c, c2, · · · , cm, · · · ,
of (1,∞). For an arbitrary real number z > 1, there exist integer m and c = (1− p)−1/α; p ∈
Q ∩ (0, 1) such that cm is arbitrary close to the number z, where Q is the set of all rational
numbers. Next from right continuity of distribution function, the form of F is Pareto at z,
where z > 1 is arbitrary.
Finally, a dense choice of p in a small neighborhood of origin, e.g., p ∈ A0 = (0, ε) ∩Q, ε > 0,
small suffices for the Theorem to hold; as the resultant sequence {cm : m = 1, 2, 3, · · · } still
spans a dense support of the variable.

For the general case let the minimum possible value of X be a > 0. The Pareto distribution
function F with minimum value a is then

F (x) = 1− (x/a)−α, x > a(> 0), α > 0 ...(2.5)

One may then consider the transformed random variable X/a(> 1). Proceeding as before the
characterization of Theorem 1 holds.

Next we state a similar result for exponential variable.

Theorem 2. Let X be a random variable with support (a,∞), a ≥ 0, and distribution func-
tion F. Denote c = c(p) to be the unrestricted p-th quantile of X(> a), and consider p in
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a (small) dense neighborhood A0 of origin (e.g., p ∈ A0 = (0, ε) ∩ Q, ε > 0, small and Q is
the set of rational numbers). Then the p-th quantile of the distribution, p ∈ A0, under the
restriction X > x0(> a) is c+ x0 − a iff F is an exponential distribution function.

Proof. For exponential random variable Y with distribution function

G(y) = 1− e−λy, y > 0 ...(2.6)

it is easy to see that the p-th quantile of the distribution under the restriction Y > y0(> 0)
is merely a shift of the unrestricted quantile by y0.

P (Y > y|Y > y0) = e−λ(y−y0) = 1− p ⇒ y = y0 −
1

λ
log(1− p) = y0 + ξY (p) ...(2.7)

where ξY (p) = − 1
λ log(1− p) is the p-th quantile of Y > 0.

This property characterizes the exponential distribution.
To see this for a general random variable Y with distribution function G and y > y0(> 0),
assume that (y0 + c) to be the new p-th quantile; shifted from unrestricted p-th quantile c by
y0. Then write in a similar fashion as in (2.4),

eg(y0+c)−g(y0) =
1−G(y0 + c)

1−G(y0)
= P (Y > y0 + c|Y > y0) = 1− p = elog(1−p) = e−k ...(2.8)

leading to the equation
g(y0 + c)− g(y0) = −k ...(2.9)

where g(x) = logG(x), G = 1−G.
One may solve (2.9) in a similar fashion as in (2.4), with the resultant solution of the
form g(x) = −λx, leading to the exponential distribution. To see this write g(mc) =
g((m − 1)c) − k = · · · = −mk, and g is seen to be linear on the points c, 2c, 3c, · · · ,mc, · · ·
thus implying exponential distribution at those points. Theorem 2 is then immediate follow-
ing similar steps of proof as in Theorem 1.
A dense choice of p in a small neighborhood of origin, A0 = (0, ε) ∩ Q, ε > 0, small suffices
for the Theorem to hold; the resultant sequence {mc : m = 1, 2, 3, · · · }; c = c(p), p ∈ A0 still
spans a dense support of the variable.

Equation (2.9) is seen to be a variant of equation (2.4). Write f(x) = g(ex), then from (2.4),
g(elog c+log x0) − g(elog x0) = −k. That is f(x) = g(ex), is of the form (2.9) in log scale as
f(log x0 + log c)− f(log x0) = −k.

Pareto and exponential distributions are inter related as follows. If X is Pareto-distributed
with minimum a and index δ, then Y = log(X/a) is exponentially distributed with intensity δ.
Equivalently, if Y is exponentially distributed with intensity δ, then aeY is Pareto-distributed
with minimum a and index δ. This relationship is reflected in the similarity of equations (2.4)
and (2.9).

Remark 1. Equations (2.4) and (2.9) are related to Cauchy functional equation. The con-
stants in the r.h.s. of these two equations are −k = log(1−p) = g(c). Thus these two equations
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can be rewritten in the form g(cx0) = g(c) + g(x0) and g(y0 + c) = g(y0) + g(c), respectively.
As already mentioned (2.4) and (2.9) are reformulations of each other. Variation of x0 is due
to shift of threshold, the other coordinate c varies as p ∈ (0, ε) ∩Q varies.
Apart from some pathological examples, the solutions of Cauchy functional equation g(x+y) =
g(x) + g(y) over R or R+ is of the form g(x) = λx.
In the present case g(x) = log(1− F (x)) is a monotone function on R+.

Remark 2. The change in the value of quantile is a result of conditioning the random variable
towards the tail of the distribution. When the tail is moderately decaying like exponential
then shift in quantile equals shift in the threshold of the random variable. However, for a
thick tailed distribution like Pareto with polynomial decay, shift of quantile is high towards
tail; it is a constant (> 1) multiple of original quantile. In this context it is worthwhile to
examine some other distributions and the status of normal distribution in the scenario. For
exponential distribution (2.6) note that

G(y)

G(y0)
=

e−λy

e−λy0
= (

x

x0
)−λ ...(2.10)

writing ey = x. Equating the r.h.s to (1− p) the value of restricted quantiles are obtained.
The above also shows the interrelation of exponential distribution with Pareto distribution
and the corresponding shifts of quantiles when crossing of threshold x0 = ey0 is considered for
the transformed variable X = eY . Tail probability of Pareto variable X decays at slower rate
O(x−λ) compared to exponential decay O(e−λy) for the exponential variable Y. As a result
restricted quantile of Pareto is wide apart from unrestricted quantile, compared to that for
exponential variable.

Below we check the effect of crossing a (large) threshold on the quantiles of some other dis-
tributions.

1. Normal distribution. For a standardized normal variable Z

P (Z > z)/P (Z > z0) = Φ(−z)/Φ(−z0) ∼ (z/z0)
−1e−(z2−z2

0
)/2 ...(2.11)

where z > z0(> 0), and z0 is large. Thus an approximate value of the restricted p-th quantile
for standardized normal distribution having crossed a high threshold z0(> 0) is given by the
following

z ≈ [−2 log(1− p) + z20 ]
1/2 ∼ z0[1−

1

z20
log(1− p)] ...(2.12)

From r.h.s. of (2.12) it is seen that the restricted p-th quantile tends to z0 for large value of
the threshold z0.
For exponential distribution with relatively thick tail the difference between the restricted and
unrestricted quantiles, as we have seen earlier, is the amount of shift in threshold value, i.e.,
the difference between the restricted quantile and the threshold value is a constant, viz., the
unrestricted p-th quantile; irrespective of the value of threshold. However, for normal distri-
bution with relatively fast decaying tail the difference z−z0 ≈ − 1

z0
log(1−p) → 0, as z0 → ∞.
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2. Weibull distribution. The standard Weibull distribution have cumulative distribution
function

H(v) = 1− e−vk , v ≥ 0, k > 0 ...(2.13)

Solving the equation

H(v)

H(v0)
=

e−vk

e−vk
0

= (1− p) ...(2.14)

for v > v0(> 0), one gets the restricted p-th quantile for Weibull distribution having crossed
the threshold v0 as, v = [vk0 − log(1− p)]1/k.
For k > 1, v ≈ v0[1 −

1
kvk

0

log(1 − p)], and conclusion similar to normal distribution holds in

this case.
The distribution (2.13) for 0 < k < 1 has a lower order decay of tail probability than ex-
ponential distribution (k = 1), and the above analysis indicates that the difference between
restricted and unrestricted qualtiles is more than the shift in threshold, whereas with k > 1 tail
probability decays faster than exponential distribution, and the difference between restricted
and unrestricted quantiles shrinks towards zero as the value of the threshold increases towards
infinity.

3. Exponential underreporting and Pareto model. Underreporting to a high level of a variable
may change the pattern of distribution of the variable of interest. The phenomenon of un-
derreporting is present in many occasions like traffic injuries, HIV infection, credit card debt
etc. In some cases it may be to the tune of 20 fold, e.g., gross underreported alcohol use in
pregnancy, see de Oliveira et al. (2011). A model of exponential underreporting may then be
more appropriate compared to underreporting to a multiplicative factor. Although in most of
the present studies we consider income /wealth underreporting up to a multiplicative factor, it
would be interesting to see how the model and relevant analysis change from traditional Pareto
model (2.1), if we take into account the possibility of exponential underreporting for some
specific cases as reported in de Oliveira et al. (2011). To this end consider the transformed
random variable U = eX having a thicker tail than distribution F (x) = 1−x−α, x > 1, α > 0
given in (2.1) of the reported Pareto variable X. Distribution of U has a slower decay of tail
probability, viz., logarithmic decay P (U > u) = (log u)−α, u > e; compared to polynomial
decay in (2.1). The distribution has density of the form f(u) = αu−1(log u)−(α+1), u > e;
which has a slower order decay than a Pareto density. As a result, the shift of restricted
quantile under the condition of crossing a threshold is of higher magnitude than that for
Pareto variable.
The shifted median under the restriction U > u0(≥ e) is at u2

1/α

0 , the shifted p-th quantile is

at u
(1−p)−1/α

0 , p ∈ (0, 1).
The corresponding shifts for reported Pareto variable X mentioned (2.1) are u02

1/α and
u0(1− p)−1/α, p ∈ (0, 1), α > 0, these are of multiplicative order whereas that of the under-
lying unreported variable U are of power order.
Apart from the specific instance cited regarding alcohol consumption, the distribution of U
may also be of interest to explain unaccounted gap between reported and unreported wealth.
One may obtain Pareto type distributions from exponential distribution with random intensity
following a beta prior, see Dasgupta (2011). A natural question arises whether it is possible to
obtain from Bayesian consideration a distribution function with P (U > u) = (log u)−α, u > e,
having logarithmic decay; originating from Pareto distribution having polynomial decay. In
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the following we answer the question in affirmative.
Such a representation provides a Bayesian insight into the situation when a traditional model
fails in favor of an alternative model.

Proposition 1. Let the random variable X be Pareto distributed with density function
g(x|a) = ax−(a+1), x > 1, a > 0. For a fixed a > 0, let U = eX |a. Suppose a has a prior
gamma density
fβ,p(a) =

βp

Γ(p)e
−aβap−1, β > 0, p > 0.

Then the marginal density of X has similar decay as that of U, i.e., a monotonically decreasing
density with decay lower than Pareto density,
f(x) = pβpx−1(log x+ β)−(p+1), x > 1.

Proof. Follows from integrating the joint density g(x|a)fβ,p(a) with respect to a.
The marginal density of X remains bounded at x = 1 for every fixed β > 0. However, this
blows up at the rate pβ−1 as β ↓ 0. Height of relative histogram near left end point 1 may
provide an estimate of p/β, mode of the distribution.

Proposition 1 has following implication. A typical heavy tailed distribution of a phenomenon
may follow a Pareto model. However, aggregate of different groups having random Pareto
indices following e.g., a gamma density may result in a heavy tailed distribution that may be
more realistic in some situations.

3. Characterization theorems for discrete random variables

Consider a random variable X with support either N0, the set of nonnegative integers; or
set of positive integers N1 = N0 − {0}. Let the cumulative distribution function of X be
denoted by F (x) = P (X ≤ x), it is enough to define F at integer values. For p ∈ (0, 1) the
p-th quantile of F is defined as F−1(p) = {inf x : F (x) ≥ p}.
The following two theorems are the counterparts of Theorem 1-2 stated for discrete random
variables.

Theorem 3. For a random variable X with support N1 and distribution function F (x) =
P (X ≤ x), let the p-th quantile of the distribution under the restriction X ≥ x0(∈ N1) be
cx0; where c ∈ N1 is the unrestricted p-th quantile of X. The above property holds for all
p of the form p = pi =

∑i
j=1 P (X = j), i = 1, 2, 3, · · · iff F (x) = 1 − x−α for some α > 0,

where x ∈ N1.

Theorem 4. For a random variable X with support N0 and distribution function F, let the
p-th quantile of the distribution under the restriction X ≥ x0(∈ N0) be c+x0, where c ∈ N0

is the unrestricted p-th quantile of X. The above property holds for p = p1 =
∑1

j=0 P (X = j),
iff F is a geometric distribution function on N0.

Proof. Theorems 3-4 follow similar lines as that of Theorems 1-2. One way implications of
the Theorems are easy to see. Consider the ‘only if’ part.
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In the case of Theorem 3, steps similar to (2.2)-(2.4) hold. The variable X has support N1.
This set is same as the set {c, c2, · · · , cm, · · · }, where c = c(p) is the p-th quantile of X,
and p of the form p = pi =

∑i
j=1 P (X = j), i = 1, 2, 3, · · · . The p-th quantile is then an

integer, as the jumps of F ocurr at integer points. For example when F (x) = 1 − x−α,
the p-th quantile c = c(p) = (1 − p)−1/α is obtained as the solution i of the equation
p = pi =

∑i
j=1 P (X = j) = 1− i−α.

Over the set N1, characterization for g(x) = logF (x) = −α log x is seen to hold in a similar
fashion like in Theorem 1.
The proof for ‘only if’ part of Theorem 4 is similar to Theorem 2 along the above lines. How-
ever, note that in this case the set N0 − {0} is also spanned by {c, 2c, · · · ,mc, · · · }, where
c = c(p) is the p-th quantile of X, p = p1 =

∑1
j=0 P (X = j), i.e., c = c(p) = c(p1) = 1. Thus

the characterization for g(x) = logF (x) holds with the solution g(x) = −λx over N0 − {0},
on the condition of restricted quantile for p = p1 only. Since the total probability is 1, the
probability mass at origin is taken care of and Theorem 4 holds.

Modeling with above two discrete distributions depends on the tail behavior of observed fre-
quency distributions. Distribution F (x) = 1 − x−α for some α > 0, where x ∈ N1 may be
termed as Discrete Pareto distribution. This may be an appropriate model for grouped Pareto
variable, grouped over class intervals of equal length.

4. Bivariate exponential model and related distributions

Consider a bivariate exponential distribution, with exponential marginal. The relation Y =
X + Z, Z ≥ 0, is a special case of a more general model

Y = aX + Z, a > 0, Z ≥ 0, ...(4.1)

where Z is independent of X.
This distribution has application in lifestyle data to explain the number of future physical
relationships for an individual, given the past in a social environment where tie from past is
loose, see Dasgupta (2011).
The restriction that the marginal distributions of X and Y are exponential with respective in-
tensities λx and λy requires that the distribution of Z is of the form aρ+(1−aρ)(1−e−λyz), ρ =
λy/λx = µx/µy, z ≥ 0. This is distribution of a random variable that is a product of two
independent random variables - a Bernoulli random variable with mean (1−aρ) and an expo-
nential random variable with parameter λy. See Iyer, Manjunath, and Manibasakan (2002).
The Bernoulli variable takes the value zero with probability aρ, thus Z = 0, with a positive
probability aρ. Under this exponential model, the correlation between the two random vari-
ables are rx, y = aρ.
Now, the restriction X > x0(≥ 0), shifts the quantiles of X by the same magnitude from
unrestricted quantiles, and this imposes a restriction on the exponential random variable Y
as Y > ax0, hence the restricted quantiles of the latter random variable is shifted by ax0,
from the corresponding unrestricted quantiles.

The converse is also true, we have the following Proposition.
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Proposition 2. Consider the model Y = aX + Z, a > 0, Z ≥ 0, where Z is independent
of X. Under the restriction X > x0(≥ 0), let the quantiles of X be shifted by x0. Let the
resultant restriction Y > ax0, shifts the quantiles of Y by ax0. Then both the variables X
and Y are exponential, and the distribution of Z is of the form aρ+ (1− aρ)(1− e−λyz), ρ =
λy/λx = µx/µy, z ≥ 0.

Proof. From the characterization of exponential distribution via conditional quantiles, it
follows that both X and Y have exponential marginal. The result then follows from the
assumed relation Y = aX + Z, a > 0, Z ≥ 0, where Z is independent of X.

Next we investigate a bivariate Pareto model in terms of conditional quantiles. It is possible
to obtain Pareto type distributions from exponential distribution with random intensity fol-
lowing a beta prior. The following result is proved in Dasgupta (2011).

Theorem A. Let the random variable X be exponentially distributed with density function
g(x|θ) = (− log θ)θx, x > 0, 0 < θ < 1, where θ has a prior beta density

fα,β(θ) =
Γ(α+β)
Γ(α)Γ(β)θ

α−1(1− θ)β−1, α > 0, β > 0.
Then the marginal distribution of X is approximately Pareto with monotonically decreasing
density having polynomial decay
f(x) = Oe((x+ α)−(β+1)), x > 0.

It may not be out of place to mention that in view of Theorem A along with Proposition 1,
starting from exponential density it is possible to obtain a monotonically decreasing density
with decay lower than Pareto density viz., f(x) = Oe(x

−1(log x+β)−(p+1)), β > 0, p > 0, x >
1; via a two stage prior of beta density and gamma density, as mentioned in Theorem A
and Proposition 1. This step wise reduction provides a Bayesian insight when a candidate
exponential model is replaced, from data viewpoint, by a heavy tailed distribution. Possible
fluctuation of parameters over heterogeneous groups/items in a population, governed by beta
and gamma distributions may explain such phenomena.
Consider the model (4.1). The intensities of Y and aX are λy and λx/a respectively. As in
Dasgupta (2011) associate a beta prior fα,β(θ) of Theorem A, on θ = e−λy . In the r.h.s. of
(4.1), this induces a prior on e−λx = e−λy/ρ, where ρ = λy/λx is considered to be a constant.
Integrating both sides of (4.1) with respect to the prior probability on θ, we then have the
relationship, see Dasgupta (2011);

Y ∗ = aX∗ + Z∗, a > 0, Z∗ ≥ 0 ...(4.2)

where the transformed variables X∗, Y ∗ have polynomially decaying densities as given in
Theorem A.
For a Pareto variable the conditional quantile of the variable crossing a threshold is a constant
multiple of the shift. Thus the conditional quantile of X∗ under the restriction X∗ > x∗0 is
approximately a constant multiple of unrestricted quantile, and this restriction on X∗ imposes
the restriction Y ∗ > ax∗0 on Y ∗, which is approximately a Pareto variable having polynomi-
ally decaying density. Thus the conditional quantiles of Y ∗ is also approximately a constant
multiple of unrestricted quantiles. The variable Z∗ is the product of two independent random
variables - a Bernoulli random variable with mean (1 − aρ) and an approximately Pareto
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random variable with same parameter as that of Y ∗. Unlike the earlier case Z∗ may not be
independent of X∗, as conditional independence and marginal independence are not related in
general. The parameter β(> 0) quantifies the dispersed nature of the transformed variables
obtained from original exponential distribution. Smaller the value of β, more dispersed is
the transformed variable with heavy tail caused by diversity of individual intensities under
consideration.

Such bivariate models are useful when value of one random variable is necessarily bounded
below by the other, e.g., maximum diameter vs. minimum diameter of an approximate oval
object in industrial production, number of relationships / physical encounters of an individual
up to two successive time points from a common start, see e.g., Dasgupta (2011).
Observed frequency distributions may reveal sharp fall like exponential or, these may have
relatively thick tails with approximate polynomial decay suggesting Pareto model. One may
study simultaneous behavior of the conditional quantiles of two variables under the restric-
tion of crossing thresholds, to search for an appropriate bivariate exponential or Pareto model.

In univariate case, there are situations when one is interested in studying the large values of
the random variable with distribution having a thick tail, i.e., the behavior of the variable
near the thick tail is of interest. In some cases Pareto model may provide a reasonable fit
when the value of the variable exceeds some high threshold value. The Pareto fit is equivalent
to constant multiplicative factor of restricted and unrestricted quantiles, former may then be
computed in terms of the latter, thus providing magnitude of restricted quantiles indicating
how large the variable can be near the tail.

5. Some examples

It is well known that Pareto distribution may explain the uneven distribution of wealth and in-
come. Therefore the above mentioned property of constant multiplicative factor of restricted
and unrestricted quantiles holds in such situations. We may examine the validity of such
assumption in other situations. The above property regarding constant multiplicative factor
of quantiles may hold for variable beyond a large threshold value. In such a situation Pareto
distribution is appropriate above that threshold value.
The characterization provides the magnitude of shift in quantiles due to shift of threshold.
In real life situations one may check the stability of shifted quantiles observed over several
repetitions. Such stability of conditional quantiles of multiplicative form cx0 in empirical
distributions, crossing a threshold x0 may indicate a Pareto model. The same may be said
about exponential model by examining the stability of conditional quantiles of the form c+x0
in empirical distributions, crossing a threshold.
In the following we check for Pareto model fit near the tail via R2 of regression.

Example 1. High tide water level at Arabian Sea
High tide at sea causes tidal bore, a high tidal wave experienced in a narrow river or estuary
that may cause substantial damage to lives and properties of inhabitants in nearby localities.
Very high water levels are of concern.
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The following data in feet, relates to high tidal range at Arabian Sea, west coast of India
near Alang ship cycling yards. Each of these 170 observations was taken as maximum of
two observations at different tide times, viz. at early hours and evening/night hours in a
day. Thus, the observations represent the maximum height of sea water level in a 24 hour
cycle. The data is spread over first six months in a year. Observation for a day is not taken
into consideration, if any one of the two tide readings is missing in that day. The recorded
observations are as follows.

36.39,36.65,36.46,35.70,34.39,32.45,30.32,30.22,30.62,31.44,32.32,33.01,33.40,
33.60,33.60,33.47,33.21,32.75,31.99,30.91,29.43,28.09,28.22,28.94,30.42,32.19,
33.96,35.50,36.59,37.08,36.95,36.10,34.49,32.16,30.88,30.09,30.06,30.58,31.27,
31.90,32.39,32.75,32.95,32.91,32.55,31.86,30.81,30.25,29.80,29.20,29.01,29.89,
31.60,33.54,35.21,36.39,36.82,36.46,35.31,34.36,32.95,31.14,29.47,28.71,28.94,
29.66,30.48,31.21,31.73,32.03,31.99,32.32,32.49,32.39,31.96,31.21,30.16,29.40,
29.83,31.27,32.98,34.42,35.28,36.36,36.72,36.26,35.08,33.31,31.24,29.24,27.99,
27.86,28.35,29.07,29.99,31.37,32.52,33.31,33.80,33.93,33.77,33.21,32.26,31.11,
30.25,30.22,30.98,32.39,34.62,36.23,37.01,37.01,36.29,34.95,33.31,31.44,29.60,
28.19,27.47,27.47,29.14,30.78,32.22,33.40,34.26,34.78,34.95,34.75,34.23,33.37,
32.35,31.37,30.68,31.44,33.50,35.18,36.23,36.59,36.36,35.60,34.52,33.24,31.86,
30.45,29.04,27.79,26.81,29.47,31.04,32.55,33.80,33.80,35.41,35.70,35.70,35.37,
34.68,33.60,32.19,30.55,32.22,33.60,34.65,35.28,35.41,35.21,34.72,34.06,33.31,
32.39

Figure 1 of log x vs. − log(1− F (x)) suggest that Pareto model may be appropriate beyond
a large threshold value rather than the whole data set. In Figure 2 the same is plotted for
log x > 3.55 with 37 observations. The fit now seems better with squared value correlation
as R2 = 0.8138, and estimated value of α = 44.5849.
With a further increase of the threshold value to log x > 3.58 the Pareto fit (2.5) with a = e3.58

to 20 observations seems more appropriate; providing the value of α = 102.6164 from least
square regression fit with a high value of R2 = 0.9207.

Example 2. Growth model for Elephant foot yam
The following data relates to weights in kilogram of 100 yams from a growth experiment
conducted in the year 2010 at Indian Statistical Institute, Giridih farm. We check the appro-
priateness of Pareto fit, especially beyond a threshold value.

4.50, 3.20, 2.60, 3.15, 2.05, 2.10, 2.65, 0.80, 1.70, 1.15, 2.90, 3.50, 4.35, 3.85, 3.60, 1.30, 2.20,
1.70, 3.70, 2.50, 3.40, 3.10, 4.45, 5.60, 4.15, 1.50, 1.90, 2.00, 3.10, 3.00, 3.10, 2.25, 2.65, 2.90,
3.60, 1.50, 1.20, 0.70, 2.80, 2.70, 3.75, 2.05, 1.60, 1.50, 3.60, 2.20, 1.40, 1.20, 0.00, 2.40, 2.50,
1.45, 1.05, 0.70, 0.00, 2.25, 2.00, 2.45, 1.55, 0.90, 0.75, 2.65, 2.25, 1.20, 2.25, 2.00, 3.80, 3.00,
3.00, 2.35, 1.05, 0.80, 3.80, 2.30, 3.80, 1.60, 0.00, 3.60, 1.60, 4.00, 3.00, 1.95, 2.00, 3.65, 3.60,
1.40, 1.40, 1.30, 3.90, 3.60, 5.50, 2.90, 2.60, 1.70, 2.80, 1.90, 1.70, 1.80, 1.10, 2.80.

In Figure 4 with 97 nonzero yam data we plot log x vs. − log(1 − F (x)) and observe that
Pareto model for Yam yield may be appropriate beyond a large threshold value, much like
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the earlier data on sea tide. Figure 5 plots the same for log x > 1 with 38 observations. The
fit of Pareto model (2.5) with a = e now seems better as R2 = 0.9460, estimated value of
α = 5.7038.
If the threshold value is increased slightly further to log x > 1.2 as shown in Figure 6, we have
23 observations and a further increase in R2 = 0.9637, providing a value of α = 7.0045 for
the model (2.5) with a = e1.2.
One may compare the Pareto indices α1, α2 over two production scenarios, the smaller value
of α signifies a better production; for in such case the (right) tail of the corresponding distri-
bution is thicker compared to that with higher value. The ratio α1/α2 may serve as an index
of production performance of situation 2 with respect to situation 1.

Example 3. Peak gust wind velocities (PGU) in Florida, USA
The following 156 observations relates to Peak gust wind velocities (PGU) for coastal city
Florida, USA in miles per hour (mph) over 12 months recordings for several years during
1930-96. When peak gust wind velocities are not available, 5-second winds velocity preceding
PGU are given. Wind types may be combined to reflect the highest reported wind velocity,
see http://www.ncdc.noaa.gov/oa/mpp/wind1996.pdf for details.

41, 49, 41, 43, 61, 38, 41, 68, 68, 44, 85, 47, 52, 58, 77, 49, 69, 67, 67, 68, 48, 56, 47, 43, 52,
58, 48, 52, 62, 97, 69, 69, 74, 74, 68, 49, 40, 39, 46, 39, 40, 46, 45, 44, 92, 45, 31, 35, 55, 62,
66, 67, 56, 58, 69, 61, 55, 47, 46, 45, 58, 52, 75, 63, 52, 51, 51, 56, 58, 67, 69, 48, 45, 61, 59,
55, 46, 58, 56, 115, 62, 47, 49, 46, 48, 51, 62, 53, 68, 62, 74, 62, 56, 40, 41, 43, 54, 60, 59, 63,
60, 69, 64, 78, 79, 49, 69, 53, 35, 35, 35, 35, 32, 32, 35, 35, 53, 35, 35, 34, 44, 51, 53, 48, 41,
76, 67, 64, 83, 58, 68, 36, 44, 46, 58, 49, 51, 61, 60, 48, 45, 53, 60, 37, 46, 40, 43, 38, 39, 53,
32, 41, 52, 45, 46, 48.

In Figure 7 with 156 PGU data we plot log x vs. − log(1 − F (x)) and observe that Pareto
model for wind gust may fit well beyond a large threshold value, much like the earlier data
on sea tide and yam-yield. Figure 8 plots the same for log x > 4.2 with 31 observations. The
fit of Pareto model (2.5) with a = e4.2 seems reasonable as R2 = 0.9819, estimated value of
α = 8.0530.
In Figure 9 we see that Pareto model to peak wind gust fits better for log x > 4.3 with 13
observations and a high value of R2 = 0.9860, with estimated value of α = 8.0128 when
a = e4.3. The values of α seem to stabilize around 8, indicating stability of the model towards
higher values of wind gust.
Taking α = 8, the median wind gust exceeding the value a = e4.3 = 73.70 is 73.70× e

1

8
log 2 =

73.70× 1.090508 = 80.37 mph.
In a similar manner the median wind gust exceeding 115, the largest observation recorded in
above PGU data, is 115× 1.090508 = 125.41 mph.
This provides an idea about the magnitude of the variable beyond the reported records.

Example 4. Worldwide earthquake data.
The following data relates to earthquake measurements during 30 September - 1 October 2011
on Richter scale recorded worldwide,
see http://earthquake.usgs.gov/earthquakes/catalogs/eqs7day-M1.txt for details.
The webpage is continuously updated, and the following segment of data was collected some-
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times on 1 October 2011.

1.7,4.8,2.2,2.8,1.8,2.3,1.2,2.1,1.4,3.0,4.8,3.6,1.6,1.3,2.4,3.8,1.3,1.7,4.7,2.8,5.4,5.2,3.1,
1.3,1.6,1.7,2.9,1.2,2.0,1.2,2.9,1.8,1.8,2.2,1.7,1.4,1.8,1.2,1.5,1.8,1.6,1.7,2.5,2.0,1.6,2.1,
1.0,1.3,3.3,1.7,4.4,2.9,1.6,2.5,2.8,2.6,1.3,1.9,2.0,1.6,1.1,2.5,1.3,1.1,1.2,1.2,1.1,1.4,2.4,
4.7,1.4,2.0,1.6,2.2,1.9,1.6,4.8,1.2,1.2,1.6,1.4,1.7,2.5,1.0,1.4,1.3,1.6,1.1,1.6,5.1,2.0,2.4,
4.5,2.5,2.8,1.7,1.1,3.2,1.4,1.5,2.4,1.2,4.8,1.4,2.0,4.8,1.3,1.8,4.6,1.0,1.8,1.3,2.5,1.1,1.9,
4.2,3.2,1.1,1.7,1.3,1.2,1.2,1.4,1.8,1.1,1.2,2.3,4.4,1.9,2.5,1.0,1.3,1.1,5.0,2.2,5.0,1.1,1.7,
1.3,2.9,1.2,1.0,1.9,1.8,2.1,1.8,1.6,1.6,2.7,1.1,1.5,1.8,1.1,1.4,4.6,1.6,2.0,2.5,1.4,1.8,1.1,
1.4,2.2.

In Figure 10 with 163 earthquake data we plot log x vs. − log(1 − F (x)) and observe that
Pareto model for earth-tremor may fit well as a mixture of two Pareto distributions. Figure
11 plots the same quantities for log x > 1.5 with 15 observations. The fit of Pareto model
(2.5) with a = e1.5 seems reasonable as R2 = 0.9668, estimated value of α = 18.0267.
Pareto model to earth-tremor fit for log x < 1.5 with 148 observations, is shown in Figure 12,
R2 = 0.9378, with estimated value of α = 3.0470 when a = 1.0. The Pareto fit in lower range
of the earthquake data is also satisfactory.
There seems to be a change in the parameter of distribution for tremor exceeding 4.2 in
Richter scale. The physical interpretation of this is worth investigating.
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Jenkinson A (1955). “The Frequency Distribution of the Annual Maximum (or Minimum)
of Meteorological Elements.” Quarterly Journal of the Royal Meteorological Society, 81,
158–171.

Klass O, Biham O, Levy M, Malcai O, Soloman S (2006). “The Forbes 400 and the Pareto
wealth distribution.” Economics Letters, 90, 290–295.

Krishnaji N (1970). “Characterization of the Pareto Distribution Through a Model of Under-
reported Incomes.” Econometrica, 38, 251–255.



14 Characterizations Based on Conditional Quantiles

Morrow-Tlucak M, Emhart C, Sokol R, Martier S, Ager J (1989). “Underreporting of Alcohol
Use in Pregnancy: Relationship to Alcohol Problem History.” Alcoholism: Clinical and
Experimental Research, 13, 399–401. Doi: 10.1111/j.1530-0277.1989.tb00343.x.

Van Montfort M, Witter J (1985). “Testing Exponentiality Against Generalized Pareto Dis-
tribution.” Journal of Hydrology, 78, 305–315.

log x

-lo
g(

1-
F

n(
x)

)

3.30 3.35 3.40 3.45 3.50 3.55 3.60

0
1

2
3

4
5

Figure 1. Pareto fit for Tide data
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Figure 3. Pareto fit for Tide data: log X > 3.58
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Figure 4. Pareto fit for Yam data
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Figure 6. Pareto fit for Yam data: log x > 1.2
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Figure 7. Pareto fit for peak wind gust data
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Figure 8. Pareto fit for peak wind gust data: log x > 4.2
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Figure 9. Pareto fit for peak wind gust data: log x > 4.3
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Figure 10. Pareto fit for earthquake data
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Figure 11. Pareto fit for earthquake data: log x > 1.5
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Figure 12. Pareto fit for earthquake data: log x < 1.5
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