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Abstract

This paper aims to evaluate the water quality along the mainstream of the Nile in
Egypt through modelling spatial distributions of water quality, using spatial statistical
analysis. The study is based upon a sample frame of 78 sampling points collected in
“February 2008” and located on the main waterway of the Nile and its delta (Rosetta
and Damietta branches). Two water quality indices are calculated as general indicators
of the overall water quality of the Nile, with special emphasis on drinking water quality.
Exploratory spatial data analysis is carried out on the water quality indices, followed
by plotting and modelling the experimental semi-variograms. Then, cross validation is
executed in order to determine the best fitted models. Finally, surface maps are generated
by performing spatial interpolation, using kriging technique. The generated surface maps
of the two water quality indices show that water quality in Upper Egypt is excellent,
in general, whereas water unfit for drinking is dominant in Middle and Lower Egypt.
Therefore, intensive physical and chemical disinfection treatments are becoming pressing
options for improving the quality of drinking water.
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1. Introduction

“Egypt gift of the Nile” said Herodot. The Nile constitutes the essential source of life in Egypt,
it provides people with their fresh water needs. It is an essential factor of production and
is vital for agriculture, transport, tourism and henceforth the socio-economic development of
the country. However, the Nile has become, to a great extent, adversely affected by human
activities. On the one hand, the population growth and the expansion of industrial, agricul-
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tural, commercial and recreational activities that exploit natural resources, including water.
On the other hand, industrial waste discharge, leakage of sewage by urban agglomeration and
agricultural runoff contributes to the Nile contamination.

Therefore, the issue of Nile pollution should be on the top of the Government’s environmental
agenda. The protection of the aquatic environment requires regular water quality monitoring
and effective pollution control in order to reduce the risk threatening the aquatic lives and
people’s health. Moreover, several quantitative research and statistical studies are needed
to understand the intended problems, identify their limitations and, accordingly, propose
realistic solutions.

To date, many studies try to make use of the spatial analysis methodology to model the spatial
variations of the water quality indicators. The adopted method makes it possible to visualize
the distribution of river water quality according to different land use and the interpolation of
water quality at unsampled locations (Ouyang, Higman, Thompson, O’Toole, and Campbell
2001; Bordalo, Nilsumranchit, and Chalermwat 2001; French 2005; Sarangi, Madramootoo,
and Enright 2006; Flipo, Jeannee, Poulin, Even, and Ledoux 2007; Rahman and Hossain 2008;
Chang 2008)

Literature review reveals lack of studies that focus on water quality interpolation along the
Nile through modelling the spatial variations of the water quality indicators. Therefore, this
paper aims to fill this gap by mapping the water quality along the Nile, modelling the spatial
variations and interpolating the water quality at unsampled locations. The software tool
Geographic Information Systems (GIS) is used since the Nile has a geographical context. GIS
is considered a powerful tool in managing water quality data, mapping and visualizing water
quality spatial distributions (Elmahdi, Afify, and Abdin 2008; Hamad 2008).

Resorting to the interpolation techniques to illustrate the spatial variability is due to the
difficulties of quantifying these variations at numerous locations. These difficulties are at-
tributable to time constraints and impediments to access such locations. Thus, employing
the interpolation technique help identify the locations with high concentration levels of pollu-
tants. The generated surface maps, locating the spatial distribution of the water quality, will
help decision makers adopt appropriate policies and undertake necessary measures not only
to combat and prevent water pollution, but also to sustain this vital water resource, the Nile.

The remainder of the paper is organized to shed light on the study area and the available
data. Section 3 provides the necessary back-ground of the applied methodology, taking into
consideration the work-flow and the availability of reliable data as given in section 2. Results
of the study are presented in section 4, and concluding discussion is given in section 5.

2. Data, study area and water quality indices

Although the Nile water quality is surely affected by the quality of water flowing from the
upstream riparian countries, the current study only covers the Nile within the Egyptian
territories. In Egypt, the Nile flows for a distance of about 1000 kilometers, starting from
Aswan at 23o58′24′′N and 32o53′54′′E and ends into a large delta at where it flows into the
Mediterranean Sea through Damietta branch at 31o31′36′′N and 31o50′41′′E and Rosetta
branch at 31o27′60′′N and 30o21′53′′E.

The Center of Environmental Monitoring and Studies of the Working Environment (CEM-
SWE) monitors the water quality of the Nile through 78 monitoring sampling points located
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along the Nile main stream and its two branches. At each sampling location, monthly ran-
dom samples of water are taken, and their physical and chemical properties are measured
and recorded to assess the water quality. These points are taken as the sample frame of the
study where 13 points are located in Greater Cairo, 45 points in Upper Egypt and 20 points
in Lower Egypt (3 on Rosetta branch and 17 on Damietta branch). Each available sampling
point has been identified by its longitude and latitude. Figure 2 portrays the map of Egypt
and the distribution of the sampling locations along the Nile. At data collection stage, the
latest available were for 2008. Thus, the study uses February 2008 as the target period since
it lies within the dry season and is characterized by low water flow and no rainfall. These
environmental conditions increase the level of pollution due to the absence of runoff water
that aids in pollutants sequestration (Elmahdi et al. 2008).

Figure 1: Map of the sampling points’ distribution along the Nile

A water quality index (WQI) summarizes and streamlines complex water quality data into a
single value that is easily conceivable. Once developed the WQI serves in examining trends,
highlighting specific environmental conditions, planning water uses, as well as supporting
decision making in assessing the worthiness of regulatory water quality program. In this
research, the weighted water quality index (WWQI), proposed by Tiwari and Mishra (1985),
is used to assess the overall water quality. Then, a drinking water quality index is developed
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to determine the suitability of water for this purpose. The WWQI determines the suitability
of water to municipal uses, according to which, the water quality is rated excellent, good,
poor, very poor and unfit when the value of the index lies between 0-25, 26-50, 51-75, 76-100
and >100, respectively. The WWQI is calculated as follows:

WWQI =
n∑

i=1

WiQi, (1)

where the subscript i denotes the ith water quality variable included in the index and Qi is
the variable quality rating calculated using the following formula:

Qi =
Vi − Ii
Si − Ii

∗ 100, (2)

where Vi is the variable observed value at a given sampling site, Ii is the ideal value of the
variable and Si is the recommended water quality standard of the variable according to the
Egyptian Law no 48 for 1982. Yet, Wi is the variable unit weight that is inversely proportional
to the recommended water quality standard of the corresponding variable, i.e. Wi = K/Si
such that K is a constant equal to 1∑n

i=1
1/Si

and
∑n

i=1Wi = 1. While, n is the number of

water quality variables included in the index.

The drinking water quality index (DWQI) determines the suitability of water for drinking
use. It is the average of the variables’ quality ratings (Qi’s), calculated by Equation 2, taking
into account that simple physical treatment and disinfection are used in the water treatment
plants, i.e. using more rigorous standards than those used in the WWQI 1. The DWQI is
calculated as follows (Donia and Farag 2010):

DWQI =

n∑
i=1

Qi

number of available indicators
, (3)

A DWQI value below 100 indicates that water is suitable for drinking after simple physical
treatment and disinfection. But a DWQI value greater than 100 indicates that water is unfit
for drinking use and therefore intensive physical and chemical treatment and disinfection are
required in the water treatment plant.2

3. Methodology

Spatial analysis is the evaluation of data properties and relations, taking into account the
spatial locality of the considered phenomenon. Spatial statistics assumes that the measured
value of a variable z at a given sampling location x within a certain region D, z(x), can be
expressed as:

z(x) = m(x) + ε(x) + ε′, (4)

where m(x) is the deterministic component of the variable at location x, ε(x) is the spa-
tially correlated error and ε′ is the spatially independent error (Fortin and Dale 2005). The

1It should be noted that one of the drawbacks of these indices is the use of simple summation of subsidiary
quality ratings. However, the WWQI or the DWQI are widely used in the literature due to their simplicity.

2For more details on these indices and their construction, consult Abou-Ali and El-Ayouti (2012).
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methodology starts with exploratory spatial data analysis (ESDA) to explore the properties
of the data, to test the underlying assumptions and to help in identifying the suitable model,
followed by the spatial interpolation. The remainder of this section is organized in a manner
that details these two steps.

3.1. Exploratory Spatial Data Analysis

This section summarizes the ESDA applied in order to ensure the suitability of data to
implement spatial statistical analysis. This is a common practice that entails four steps.
The first step inspects the normality of the data distribution. If data prove not normally
distributed, hence a normality transformation is required. The second step is to detect outliers
by the semi-variogram cloud since their presence may affect the analysis.

The third step involves trend investigation. Trend consists of two components: a fixed global
trend and a random short range variation (random error). The first, if existent, should be
removed, to fulfil the sationarity assumptions, then the random error is modelled (Hamad
2008). As a result, the trend analysis 3-D plot is used to identify the global trend. Also,
Dowd (2003) introduced the global D-statistic to test for constant spatial mean as follows:

DG =
1

n

n∑
i,j=1

[z (xi)− z(xj)], (5)

where n is the total number of sampling locations. The null hypothesis tested is the sta-
tionarity of the spatial mean. The test statistic is the standardized global D-statistic (ĎG =

DG√
VAR(DG)

), which has asymptotically a standard normal distribution. The null hypothesis

is not rejected with a confidence of (100-α)% if the value of the test statistic is within the
confidence interval, otherwise it is rejected, where α is the significance level.

Finally, the presence of spatial dependence, one of the most important properties of spatial
data sets, is checked. The spatial dependence structure must be taken into account through
modelling the spatial variations using semi-variogram models (Haining 1990). The degree of
spatial dependence can be estimated using spatial autocorrelation coefficients such as Moran’s
I, which is defined as follows (Fortin and Dale 2005):

I =
1

w

n∑
i=1

n∑
j=1

wij [z(xi)− z][z(xj)− z]

1
n

n∑
i=1

[z(xi)− z]2
, (6)

where z(xi)and z(xj) are the variable values at sampling location xi and xj , respectively and
z is the sample mean of the variable. Yet, wij are the elements of the weight matrix such
that wij = 1

dij
, where dij is the distance between xiand xj , and W is the sum of wij . Moran’s

I statistic ranges from -1 (negative correlation) to 1 (positive correlation). In this study, the
geo-statistical analyst exploratory spatial data analysis toolbox of the Arc GIS 9.2 software
is intensively used to apply the four main steps described above.

3.2. Spatial interpolation

The study applies the kriging interpolation technique, in which, the estimated value of the vari-
able Z at a certain location xo, z

∗(xo), is a linear combination of the weighted average obser-
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vations z(xi) at neighbouring locations xi, i = 1, 2, ...,m defined by: z∗ (xo) =
∑m

i=1wiz(xi).
The weights wi are based on the distance and the structure of spatial dependence between
observations (Hamad 2008). In fact, kriging technique has many advantages, of which: 1) it
provides the best linear unbiased estimator for Z(xo); 2) it incorporates the spatial variability
to enhance the prediction efficiency; and 3) it is accompanied with a measure of precision.
Therefore, kriging has been considered the most suitable spatial interpolation technique to
be used in this study.

Kriging is divided into two tasks: 1) modelling the spatial structure of the data, using semi-
variograms and 2) interpolating the value of a certain variable at an unobserved location,
where the weights assigned to the observations are determined on the basis of the fitted semi-
variogram model. The semi-variogram is a function describing the spatial variability between
the variable values at different locations within the study area. It is defined as γ(h) = 1/2
V ar[Z(x)− Z(x+ h)] and estimated using the following semi-variance function:

γ̂ (h) =
1

2N(h)

N(h)∑
i=1

[z (xi)− z (xi + h)]2 (7)

where z(xi) is the value of the variable Z at the sampling location xi, and N(h) is the number
of pairs of sampling locations located at distance h from one another (Fortin and Dale 2005).
Yet, h is the spatial lag size used to reduce the larger number of possible combinations. Trial
and error approach is usually considered in the selection of the lag size and the number of
lags (Johnston, Hoef, Krivoruchko, and Lucas 2001; Sarangi et al. 2006).

After computing the“experimental semi-variogram”from the sample data, a“theoretical semi-
variogram” is modelled to fit this experimental semi-variogram, through estimating three pa-
rameters the sill, the range and the nugget. Since this study is limited to the longitudinal
profile of the Nile, the semi-variograms are estimated and fitted in one direction only (i.e.
isotropy is assumed). The best semi-variogram model and its parameters are evaluated using
cross-validation method, by ignoring each data point, one at a time, and kriging the associated
data value. Then, the differences between the interpolated and the observed values are sum-
marized using cross-validation statistics, namely, the mean error (ME), the root mean squared
error (RMSE), the mean standardized error (MStE) and the root mean squared standardized
error (RMSStE) (Johnston et al. 2001).

In the kriging family, ordinary kriging is the most commonly type used. This study uses
ordinary kriging, which assumes the model Z(x) = µ+ ε(x), where ε(x) ∼ (0,Σ), µ is an un-
known constant mean and Z(x) is weakly stationary. The optimal weights wi, i = 1, 2, . . . ,m,
that will yield the best linear unbiased estimate for the value of the variable of interest at
one or more unsampled locations, can be obtained by minimizing the kriging variance σ2E =
V [Z∗(xo)−Z(xo)], subject to the unbiasedness condition

∑m
i=1wi = 1. The estimated weights

are then substituted in z∗(xo) =
∑m

i=1wiz(xi) in order to obtain the interpolated value z∗(xo).

In brief, after computing the experimental semi-variogram, different semi-variogram models
are fitted to the experimental semi-variogram to select the best fit model and its parameters,
using cross-validation techniques. Finally, interpolating the variable values at unsampled
locations and generating surfaces illustrating the spatial distributions of the variable under
study can be performed, using kriging interpolation technique. Also, ArcGIS geo-statistical
toolbox has been used for spatial interpolation, using the ordinary kriging module, for the
two water quality indices: WWQI and DWQI, taken one by one.
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4. Results

4.1. Exploratory Spatial Data Analysis

Following the four stage of ESDA previously described. Starting with testing the normality
assumption through the inspection of the normal Q-Q plots indicate that the two WQIs are
not normally distributed. Applying a log transformation to the WQIs ensures the normality
of the variables.

Second, the 3-D trend analysis plots indicate that the WWQI and the DWQI decrease from
Upper Egypt to Middle Egypt and Lower Egypt. However, the results of the D-statistic test
support the stationarity of the WWQI (D = 1.83, p-value = 0.27) and the DWQI (D = 1.9,
p-value = 0.23). Accordingly, there is no need to remove the first order polynomial trend.
Thus, it can be concluded that the WQIs are stationary and it is better to use ordinary kriging
assuming constant trend to interpolate their quality levels along the Nile.

Third, scrutinizing the semi-variogram clouds of the WQIs reveals the presence of outliers.
However, these outliers have no significant effect on the degree of spatial dependence measured
by Moran’s I with a value of about 0.5 and a p-value < 0.001. Hence, no need to delete
them from further analysis. Moran’s I statistics indicate the significant presence of positive
moderate spatial autocorrelation i.e. near locations are more related than distant locations.

4.2. Spatial interpolation

By trial and error, the lag size is set to 20 km and the number of lags is chosen in a manner
that the distance of significant autocorrelation becomes clearly visible. Figure 2 illustrates
both the experimental and the theoretical best fitted semi-variogram model for each variable,
assuming constant trend. Generally, each semi-variogram starts low at closer distances and
elevates as the distance widen. The spatial analysis results indicate that the best theoretical
models (based on the root mean square errors) which fit the experimental semi-variograms
are the Gaussian models for both WQIs given by:

γ (h) =

{
Co + C1

[
1− exp

(
−3h2

a2

) ]
for 0 < h < a

Co + C1 for h ≥ a
, (8)

where Co, C1, a indicate the nugget, the sill and the range, respectively and h is the lag size.

Figure 2: Best fitted semi-variogram model assuming constant trend
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Table 1 illustrates the best fitted semi-variogram model parameters. It also illustrates a mea-
sure for the degree of spatial dependence given by the share of the variability due to spatial
dependence (sill) to the total variability (sill + nugget). Examining Table 1, it is found that
both the WWQI and the DWQI exhibit strong spatial dependence between the sampling
points along the Nile up to a distance of 87 and 81 km., respectively. The cross validation
statistics (Table 2) indicate that the selected semi-variogram models and the associated pa-
rameters are reasonable. They have the smallest RMSE, the MStE are closer to zero and the
RMSStE are closer to one.3

Variable Model Number of lags Nugget Sill Range Sill
Sill+Nugget

Co C1 a

WWQI Gaussian 18 0.09 0.42 87 km. 0.82
DWQI Gaussian 18 0.06 0.29 81 km. 0.83

Table 1: Best semi-variogram model assuming constant trend

Variable ME RMSE MStE RMSStE

WWQI -2.265 50.86 -0.088 0.9452
DWQI -3.792 114.8 -0.058 1.001

Table 2: Cross validation statistics of ordinary kriging assuming constant trend

The generated WWQI map depicted in Figure 3 shows excellent water quality at Upper Egypt,
except at Asuit where good and poor water qualities are noticed. Also, it shows that the water
quality varies between excellent and good at Middle Egypt. Noticeably, the water is of poor
quality at Beni-Suef. Generally, Lower Egypt suffers from poor water quality, especially at
El-Sarw Drainage. Indeed, the water quality is very poor in Rosetta Branch, especially in Kafr
El-Zayat. The contour map of prediction errors (Figure 3) indicates that the prediction errors
of the points located in Middle and Lower Egypt are considerably large relatively to those
sited in Upper Egypt. Moreover, it shows that the prediction standard errors are relatively
smaller around the sampling points than in areas without sampling points.

The DWQI map (Figure 4) represents the spatial distribution of the drinking water quality.
The water of the Nile is of good quality for drinking in Upper Egypt, except in Asuit. Poor
drinking water qualities are depicted from the map in Greater Cairo and Lower Egypt. An
interesting point is that the DWQI is above 100 at all the drinking water intakes along the
Nile in Middle and Lower Egypt, indicating poor drinking water qualities. The contour map
of prediction errors (Figure 4) shows that the prediction errors are large, in general. However,
the prediction errors of the points located in Middle and Lower Egypt are larger compared
with those sited in Upper Egypt. This result is due to the presence of extreme outliers.
Moreover, the prediction errors, as expected, are larger in Luxor, Qena and Rosetta branch
due to the shortage of sampling points.

Figure 5 illustrates the percentage contribution of each polluting variable to the drinking
water quality index, which could help in determining the cause of water pollution. The figure

3This model is the best fitted model as compared to all other semi-variogram models.
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Figure 3: Surface generation of the WWQI
and contour map of the prediction standard
errors for kriged WWQI

Figure 4: Surface generation of the DWQI and
contour map of the prediction standard errors
for kriged DWQI

shows that the unfit water for drinking use dominant in Asuit are attributed to the high levels
of Ammonia (NH4). As well as, the poor drinking water quality in Beni-Suef and Greater
Cairo are due to the high levels of heavy metals (Mn + Fe). Additionally, the figure indicates
that the high prevalence of biological oxygen demand (BOD) has a great effect on the water
quality. This means that the organic waste is problematic in Aswan, Sohag, Menya and
Gharbeya. A major type of organic waste is human waste, which usually involves significant
human pathogens creating a health hazard (Rahman and Hossain 2008).

5. Discussion

The Nile pollution becomes a pressing national issue in Egypt. This is due to the accelerated
population growth and economic activities, which impose a heavy burden on the viability of
the Nile water quality. Accordingly, this study aims to assess the Nile water quality in Egypt
at “February 2008” using spatial statistical analysis. In fact, spatial interpolation techniques
facilitate the identification of highly polluted areas. This in turn will aid decision makers in
adopting appropriate policies to combat and prevent the Nile water pollution.

After exploring data properties and resorting to ordinary kriging to spatially interpolate the
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Figure 5: Surface generation of the DWQI and contour map of the prediction standard errors
for kriged WWQI

water quality along the Nile in Egypt, cross-validation technique proved that the Gaussian
models are the best fitted semi-variogram models describing the spatial variability of both
indices, WWQI and DWQI. Spatial interpolation is performed on the bases of these models
and surfaces are generated to map the spatial distribution of the water quality.

It can be concluded from the results of the study, in conjunction with the findings of other
relevant studies and information, that:

� Upper Egypt has excellent water quality, except Asuit which is characterized by water
quality varying between good and poor. Poor water quality in Asuit is attributed to
agriculture discharges and fertilizers factories situated on its river banks (CEMSWE
2008);

� Water quality varies between poor and good in Middle Egypt and along Damietta
branch. Very poor water quality is observed at the Rosetta branch due to accumulated
industrial discharges into the river. These discharges originate from the industrial com-
plex of pesticides and fertilizers located at Kafr El-Zayat and some factories located in
Greater Cairo. Besides agricultural discharges stemming from the agricultural drainages
in Beni-Suef (CEMSWE 2008);

� Excluding Asuit, good water suitable for drinking after applying simple physical treat-
ments and disinfection in the water intake plants is situated at Upper Egypt;

� Unfit water for drinking, dominant at Asuit and along Rosetta and Damietta branches,
is attributed to the high levels of Ammonia (NH4) originating from the agricultural
drainages and the wastes of the pesticides and fertilizers factories. The poor drinking
water quality at Beni-Suef and Greater Cairo is due to high levels of heavy metals (Mn
+ Fe)(CEMSWE 2008). Therefore, simple physical and chemical treatment with disin-
fection is not adequate and intensive physical and chemical treatments with disinfection
are the most suitable options for the water intake plants in these areas. Moreover, strict
water quality standards should be imposed on drains and wastewater discharges; and
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� The BOD has a significant negative effect on water quality in Aswan, Sohag, Menya and
Gharbeya. This can be attributed to the bad municipal sewage network covering those
governorates (CEMSWE 2008). These high BOD levels reduce the ability of water to
sustain aquatic life, inducing negative impact on the ecosystem and fisheries.

In light of the results and the experience and knowledge acquired during field practice, the
following recommendations may be useful for future research:

� The sampling points should be increased to enhance the accuracy of estimation in areas
with few or without sampling points;

� Taking the direction of the water flow into account would produce better results since,
in a river system, sampling site Y is only affected by upstream sampling site X; and

� Carrying out further studies which highlight seasonal distribution and spatio-temporal
analysis and emphasize the concept of the dynamic transport of pollutants loadings.
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