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Abstract

Soil moisture is one of the main physical quantities with a key role in water resources
accounting research. Due to the spatial nature of this quantity and limitations of ground-
based or remote sensing technology, the reliability of soil moisture data is of practical
concern. Blending multiple sources of soil moisture data helps to combine the strengths
and mitigate the weaknesses exhibited by each individual source. We build on the Bayesian
hierarchical spatial model by Chiu and Lehmann (2011) to incorporate multiple sources of
remotely sensed data on soil moisture. This model-based approach accounts for covariates,
and can handle the various spatial resolutions among the data sources without manual
aggregation or resampling. This unified approach also provides insights into the reliability
(uncertainty) of each data source and of the blended product. We also briefly introduce
an extension for model-based spatial aggregation of areal data.

Keywords: Bayesian inference, change-of-support problem, conditional autoregressive model,
hierarchical modelling, Metropolis-Hastings, model-based spatial aggregation, remote sensing.

1. Introduction

According to the Australian Bureau of Meteorology, Australia is the driest inhabited con-
tinent. For reliable water resources assessment and accounting, continent-wide studies are
required. Ground-based observations are considered most representative of the physical quan-
tities relevant to this type of studies. Yet, they are spatially sparse and often lack geographical
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coverage to yield necessary data for large-scale investigations. Consequently, in the hydrolog-
ical research community, remotely sensed products have played a vital role in water resources
accounting. The term “product” refers to a physical quantity derived from surrogates (often
via so-called retrieval models, e.g. Wigneron et al. 2003) instead of directly measured. Of
the physical quantities relevant to water resources accounting research, soil moisture (SM) is
one key component, as it directly influences surface runoff (Betson 1964). For example, the
journal Remote Sensing of Environment alone publishes a vast number of articles that cover
a wide range of topics related to SM, including instrumentation technology (e.g. Aubert et al.
2011); retrieval models and their performance for converting captured surrogate raster images
(of, say, surface temperature) to SM (e.g. Wigneron et al. 2003); benchmarking of remotely
sensed SM products against deterministic model-based products (e.g. Doubková et al. 2012);
and many more. Other journals with a heavy presence of articles on remotely sensed SM
products include the IEEE Transactions on Geoscience and Remote Sensing.

At the start of October 2011, major instrument failure occurred to the Advanced Microwave
Scanning Radiometer – Earth Observing System (AMSR-E) aboard the Aqua satellite. Until
its failure, the AMSR-E SM product had been regarded as one of the more reliable sources of
areal SM data with wide coverage. Thus, much remote sensing literature on SM has featured
AMSR-E. Other frequently studied satellite-based SM products include those derived from
images captured by the Advanced Synthetic Aperture Radar (ASAR) and the Advanced
Scatterometer (ASCAT), aboard the Envisat and Metop-A satellites, respectively.

Areal products are available not only by remote sensing, but also by deterministic modelling,
including the CSIRO Atmosphere Biosphere Land Exchange (CABLE) (Kowalczyk et al.
2006) and the Australian Water Resources Assessment Landscape (AWRA-L) (van Dijk and
Warren 2010; van Dijk and Renzullo 2011) models. When multiple areal SM products are
available, making the best collective use of such information sources is of obvious interest.
The blending/fusion/synthesis of multiple products to produce a single hybrid product is one
of the most active areas of water resources accounting research.

Typically, different remote sensing instruments record emitted or reflected radiation at differ-
ent pixel sizes; the readings are then converted to estimates of biogeochemical quantities, such
as SM, using a range of empirical and analytical models. Products derived from deterministic
models may come at their own spatial resolutions, too. Pixel-wise blending after manual spa-
tial realignment is a popular approach for blending areal products. In this approach, a working
resolution is prescribed from a candidate set of one or more resolutions. Point-level or areal
products with pixel sizes smaller than prescribed are spatially aggregated (upscaled) by some
form of averaging, and conversely, products with larger pixel sizes are “re-sampled” or “sub-
sampled” (downscaled) to the working resolution, typically via some interpolation algorithm.
Correlation among the reprocessed raster images is assessed for each candidate resolution,
and the apparently optimal candidate is chosen. Within a given pixel at the chosen resolu-
tion, blending of SM products is peformed separately from other pixels, then individual pixels
are stitched back together to form a raster image of the blended product. Researchers in the
AWRA Model-Data Fusion (MDF) Project (under the Water Information Research and Devel-
opment Alliance between CSIRO and the Australian Bureau of Meteorology), e.g. Gouweleeuw
et al. (2011), Jin and Henderson (2011), and Renzullo et al. (2012), have built on existing
work from the literature to demonstrate different pixel-wise blending approaches.

To date, we are unaware of articles prior to Chiu and Lehmann (2011) that account for
within-product spatial dependence for blending multiple products in water resources moni-
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Figure 1: MRC quantities on 2005-06-13. AMSR-E data are missing over pixels outlined in
pink, and values shown for those pixels are imputed through the posterior predictive distri-
bution based on our model (see Sections 3 and 5.2). White ASAR pixels denote “blind spots”
where data are missing/irrelevant (see Sections 2 and 3.2). Antecedent precipitation (AP) is
a transformation of AWAP (see Section 3.3).

toring research. These authors, also in the AWRA MDF Project, propose a Bayesian hierar-
chical framework with conditional autoregressive (CAR) spatial random effects to model the
relationship among two SM products and two covariates; the hierarchical structure handles
the change-of-support problem and avoids manual spatial realignment. The unified frame-
work not only produces a blended SM product, but yields rigorous uncertainty estimates and
allows benchmarking of one against the other, all in a single data analysis. On the other
hand, their main objective was not a blended product per se, as one of the products was
ground based and contributed minimally to the blended product. In this paper, we build
on their approach to blend two remotely sensed SM products alongside covariates. We also
demonstrate statistical model-based error characterization for these products through our
framework. Chiu and Lehmann (2011) considered the rectangular region that circumscribes
the Murrumbidgee River Catchment in eastern Australia (outlined in black, e.g. in Fig. 1),
due to a lack of ground SM measurements beyond the catchment for benchmarking. Although
we do not model ground measurements in this paper, we consider the same rectangular region
so that the practicality of our methodology can be demonstrated for a manageable portion of
the continent before it is extended to continental scale. We focus on daily data from January
and June to represent typical summer and winter conditions, respectively. Although temporal
smoothing is absent from our approach, an integrated spatio-temporal model (e.g. Cressie and
Wikle 2011) may be pursued to additionally address temporal patterns.

In Section 2, we describe the two SM products to be blended, and one of the covariates (the
remaining covariate is spatial coordinate). Our hierarchical model is presented in Section
3. The Bayesian inference and implementation procedure is described in Section 4, followed
by inference results in Section 5, including error characterization of the input and blended
products. We conclude our paper in Section 6, in which we also describe an extension for
model-based spatial aggregation of a given product, and offer directions of future extension.

2. Sources of data

For our hierarchical spatial model in Section 3, we consider the following MRC quantities.

The AWAP product for daily rainfall. The Australian Water Availability Project (AWAP)
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precipitation product (Jones et al. 2009) in mm is gridded over 0.05◦ pixels. It results from
applying smoothing spline interpolation to rainfall “anomalies” defined using measurements
from a spatial network of rain gauges. We consider AWAP data to coincide with the time
frame of remote sensing data described below. There are no missing AWAP values across
Australia. We consider AWAP data for the MRC only.

The remotely-sensed VUA AMSR-E product for soil moisture. We consider the AMSR-E
SM product by Vrije Universiteit Amterdam (Owe et al. 2008). AMSR-E data over 0.25◦

pixels are available for the entire Australian mainland except for “blind spots” (due to a
combination of heavy vegetation, unfavourable weather conditions, instrumentation failure,
etc.). The AMSR-E product is recorded in %volume; it is regarded as a direct representation
of SM. Edges of AMSR-E pixels align perfectly with AWAP pixel edges. Thus, each AMSR-E
pixel contains exactly 25 AWAP pixels. For spatial modelling, we consider C-band data from
the descending pass over the MRC only, comprsing M=312 AMSR-E pixels.

Daily ASAR wetness index with masked pixels. In the Global Monitoring mode, ASAR records
backscatter images around the globe in swaths of 30 arc-second pixels. Partial coverage of
Australia is through up to several swaths per day. We use the prototype ASAR surface wetness
product developed by the Technische Universität Wien (TUW) and provided to CSIRO for
assessing a deterministic-model-based SM product (van Dijk and Warren 2010; Doubková
et al. 2012). This prototype is a reformulation of original images into 15 arc-second pixels
(i.e. 144 such pixels nested in each AWAP pixel) by correcting for the incidence angle at which
the backscatter instrument operates. Our ASAR time frame essentially spans 2005 to 2008.
Certain ASAR pixels are masked, i.e. pre-identified as locations where this ASAR product may
be uninformative. We treat masked pixels as non-existent throughout the time frame. The
natural range of the ASAR product is [0, 1], and is interpreted as a unitless index of relative
wetness rather than a direct representation of SM (van Dijk and Warren 2010). The definition
of ASAR relative wetness requires estimating driest and wettest conditions (Mladenova et al.
2010) and can produce ASAR values outside of [0, 1]. Rather than treating out-of-range
ASAR values as missing data, we adopt the common practice in hydrology of regarding them
as indications of extreme dryness or wetness relative to the full dataset. Indeed, according
to histograms1 of ASAR values from selected pixels (approximately equidistant) across the
MRC, the empirical distribution of ASAR values is smooth and roughly Gaussian, with no
indication of anomaly due to out-of-range values.

3. A Hierarchical Statistical Spatial Model

Fig. 2 provides a visual representation of the hierarchical structure among key quantities in our
statistical model. We consider AWAP to be the underlying driver of latent SM. Thus, latent
SM is modelled at the same spatial resolution as AWAP. To this end, we adapt the model by
Chiu and Lehmann (2011), with ground probe data replaced by ASAR data. The rationale is
as follows. For Chiu and Lehmann (2011), one of the objectives was to benchmark the AMSR-
E data (areal, contiguous over the continent except for blind spots) relative to ground probe
data (point-level, very sparse, and available only for 38 MRC locations). For this purpose,
the contribution of the latter towards the inference for latent SM (areal, contiguous over

1Not shown. They comprise ASAR values from selected pixels altogether and temporally collapsed either
over January from all of 2005 to 2009, or over June from all of 2005 to 2008.
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Figure 2: Schematic for the relationship among AMSR-E, ASAR, AWAP (observable) and SM
(latent) within the model hierarchy. Pink outlines delimit an AMSR-E pixel, and red outlines,
an AWAP or SM pixel. ASAR pixels (very small) are represented by blue “+” signs. Each
set of dotted lines joining two consecutive levels in the hierarchy corresponds to a regression
layer in the model. Specifically, ASAR is a response of SM at the SM resolution; AMSR-E is
a response of SM at the AMSR-E resolution; and SM is a response of AWAP at a common
resolution. Spatial autocorrelation at each level is attributable to that among AWAP pixels.

the MRC) is understandably minimal. In contrast, currently our objective is the inference
for latent SM and the error characterization of AMSR-E; thus, ASAR data (areal at a very
high resolution, available over the continent except for blind spots) is expected to contribute
substantively towards this inference when compared to ground probe data. Ignoring ground
probe data altogether in the current model removes the burden of extra model parameters.

Despite some concern over ASAR’s ability to inform the underlying SM content (Mladenova et
al. 2010; Pathe et al. 2009), the role of the ASAR wetness index in the spatial model hierarchy
may be regarded as ancillary information to be “assimilated” into the AMSR-E product, the
latter being a gridded representation of SM. Both products are in turn informed by the AWAP
product, whose spatial variation patterns are passed along to the latent state and further to
both ASAR and AMSR-E. Another argument for including potentially less informative data
is to safeguard against “biased assimilation”: some investigators are proned to consider only
data that agree with their world view while ignoring all other data; this practice often causes
biased conclusions (Lord and Taylor 2009).

Our model statements below are intended to handle the spatial structure of MRC quantities
for a given day.

3.1. Relating AMSR-E data and big-pixel SM state

Let Bm be the mth AMSR-E pixel and smr the rth AWAP pixel inside Bm, for r=1, . . . , 25
and m=1, . . . , M ; vm≡v(Bm) the AMSR-E value at Bm; ψmr≡ψ(smr) the latent SM spatially
averaged across smr; and ψm≡ψ(Bm)=(1/25)

∑
r ψmr the latent SM spatially averaged across

Bm. Assuming AMSR-E to be a change-of-scale (i.e. linear) representation of latent SM, then

vm = α0 + α1ψm + δm , δm
iid∼ N(0, σ2δ ) . (1)
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3.2. Relating ASAR data and SM state inside an AWAP pixel

Let qmrk be the ASAR value at the kth observed pixel inside smr for k=1, . . . , Kmr (defined
only for AWAP pixels with Kmr≥1); and ψ̃mr = log ψmr. Then, we take

qmrk = α3ψ̃mr + εmrk, εmrk
ind∼ N(0, σ2m), (m, r, k) ∈Mq≡{(m, r, k) : qmrk observed}. (2)

Pairwise scatterplots (not shown) suggest approximate linearity between log(AMSR-E) and
ASAR, so that Eq. (1) implies log-transformation of ψ in (2). Again, we regard qmrk as point-
level data due to the high resolution of ASAR images and the abundance of ASAR blind spots
which include masked pixels. On any given day, ASAR blind spots comprise vast contiguous
regions of the MRC (e.g. Fig. 1, middle panel). Thus, instead of imputing q at blind spots,
we consider each captured ASAR image to correspond to fixed spatial design points.2 Finally,
the lack of an intercept in (2) is to avoid potential confounding with β0 in (3) below.

3.3. Relating SM state and antecedent precipitation inside an AWAP pixel

We wish to model the latent SM as being driven by antecedent precipitation (AP), subject
to additive error with constant variance σ2η. Then,

ψ̃mr = β0 + β1(pmr − p∗) + ηmr , ηmr
iid∼ N(0, σ2η) , (3)

where pmr≡p(smr) is the 4th root of a 20-day moving average of AWAP at smr (see Chiu
and Lehmann 2011, for rationale), and p∗ is an arbitrary pre-specified constant; taking p∗ as
approximately the mean of the observed {pmr} is known as covariate centring, which reduces
the dependence between β0 and β1, thus improving MCMC mixing (e.g. see Gelman and Hill
2007). According to further exploratory analyses, our definition of pmr and log-transformation
of ψ (based on log(AMSR-E)) in (3) is appropriate for June, yet less so for January. Due to a
noticeable difference in relationships among relevant quantities between these months, future
extensions of our model can include a separate summer structure for the p-ψ relationship. In
this paper, we assume (3) for both months.

3.4. Relating antecedent precipitation and space

Let xmr=(xmr1, xmr2) be a linear transformation of the longitude-latitude coordinates of the
top-left corner of smr; hγ a polynomial of xmr with a pre-specified order and coefficient vector
γ; and φmr≡φ(smr) the spatial random error associated with smr. Then,

pmr = hγ(xmr) + φmr + ζmr , ζmr
iid∼ N(0, σ2ζ ) . (4)

We take hγ(xmr)=γ1xmr1+γ2xmr2+γ3xmr1xmr2+γ4x
2
mr1+γ5x

2
mr2, as various earlier models

using a higher order polynomial with interactions suggested that this formulation of h suffices.

3.5. Spatial patterns

Reindex {φmr} as φ=[φ1, φ2, . . . , φ25M ]′. We take a special nearest-neighbour Gaussian CAR
model for φ, denoted by

φ ∼ CAR(1; τ2) (5)

2At the cost of higher computational intensity, the current model may be modified to regard ASAR data
as areal, treating blind spots and out-of-range values as missing data to be imputed.
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with scale parameter τ2 and“1”corresponding to a first-order rectangular adjacency of AWAP
pixels that induces spatial dependence.3 Specifically, let φ−i denote φ with φi removed. Then,

φi
∣∣φ−i, τ2 ∼ N

 1

wi+

∑
i′ 6=i

wii′φi′ ,
τ2

wi+


where the dependence structure of φ is imposed by

wii′ =

{
1 if si′ is one of the 8 neighbours of si along its rectangular border
0 otherwise

with wi+=
∑25M

i′=1 wii′ . Note that wii=0 for all i. Taking
∑

i φi=0, the log-likelihood of φ given
τ2 is (Banerjee et al. 2004)

log f(φ|τ2) = −25M − 1

2
log τ2 − 1

2τ2
φ′(D−W)φ+ constant

where W=[wii′ ] is the symmetric adjacency matrix for our model, and D=diag{w1+, . . . ,
w25M+}. Note that D−W has rank 25M−1.

3.6. Prior distributions

Finally, we take

α1, α3, β1
iid∼ N(3a−1/2, a−1) , α0, β0, γ`

iid∼ N(0, a−1) , σ2m, σ
2
δ , σ

2
η, σ

2
ζ , τ

2 ind∼ IG(a1, a2) (6)

for all `=1, . . . , 5 and all m∈S≡{m:
∑

rKmr≥ 1}. Here, IG(a1, a2) is the inverse-Gamma
distribution with mode a2/(a1+1). Centring the slope priors at three times the prior standard
deviation (SD) is to impose a large prior probability of positive association between q and ψ̃,
between v and ψ, and between ψ̃ and p. For convenience and relative diffuseness, we take a =
0.01, and a1 = a2 = 1.

4. Bayesian inference

Let vobs be the vector of {vm} where observed. Also let vmis be the vector of {vm} where
unobserved. Then, the posterior distribution for our model parameters is

f
(
vmis,ψ,φ,Ω

∣∣ data
)

= f
(
vmis,ψ,φ,Ω

∣∣ q,vobs,p)
∝ f(q,v,p,ψ,φ,Ω)

= f
(
q|α3,ψ,

{
σ2m
})
f
(
v|α0, α1,ψ, σ

2
δ

)
f
(
ψ|β,p, σ2η

)
f
(
p|φ,γ, σ2ζ

)
f
(
φ| τ2

)
f(Ω) (7)

where Ω=[α′,β′,γ ′, {σ2m : m = 1, . . . ,M}, σ2δ , σ2η, σ2ζ , τ2]′, and f(Ω) is the prior from (6). The
posterior (7) has no closed form; we approximate it via Markov chain Monte Carlo (MCMC),

3When the 5th-order exponential decay version of (5) by Chiu and Lehmann (2011) was applied to blend
AMSR-E and ASAR, the overall inference showed minimally noticeable difference to the first-order model here.
Moreover, using positive weights for all areal neighbours in a higher-order CAR model may be unncessarily
restrictive; for example, see Lindgren et al. (2011).
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from which inference for the unknown quantities vmis,ψ,φ, and Ω is drawn. Sparse matrix
computational algorithms allow major reduction in computational time, while parallelization
within MCMC iterations can lead to further reduction (see Appendix A1).

4.1. Full conditionals

The numbered equations below are full conditional distributions for MCMC implementation
of (7).

f
(
vmis

∣∣ �) =
∏

m:vm unobserved

N
(
α0 + α1ψm, σ

2
δ

)
, (8)

log f(ψmr|�) = −1

2
{c11mr logψmr + c21mr(logψmr)

2 + c12mrψmr + c22mrψ
2
mr}+ constant (9)

c11mr = 2

[
1−

α3
∑

k qmrk
σ2m

− β0 + β1(pmr − p∗)
σ2η

]
, c21mr =

α2
3Kmr

σ2m
+

1

σ2η
,

c12mr =
−2α1

25σ2δ

vm − α0 −
α1

25

∑
r′ 6=r

ψmr′

 , c22mr =
α2
1

252σ2δ
,

φi|� ∼ N

(
c01i
c02i

,
1

c02i

)
with constraint

∑
i

φi = 0 (10)

c01i =
pi − hγ(xi)

σ2ζ
+

1

τ2

∑
i′

wii′φi′ , c02i =
1

σ2ζ
+
wi+
τ2

,

α3|� ∼ N

(
c1
c2
,

1

c2

)
, c1 =

∑
(m,r,k)∈Mq

ψ̃mrqmrk
σ2m

+ 3
√
a , c2 =

∑
m,r

Kmrψ̃
2
mr

σ2m
+ a , (11)

[α0, α1]
′|� ∼ BVN

(
C−18 c7,C

−1
8

)
(12)

c7 = σ−2δ ΨΨ ′v + aµ , C8 = σ−2δ ΨΨ ′ ΨΨ + aI2 ,

µ =

[
0
3√
a

]
, ΨΨ =

1 ψ1
...

...

1 ψM

 , In = n× n identity matrix,

β|� ∼ BVN
(
C−14 c3,C

−1
4

)
(13)

c3 = σ−2η P′ψ̃ + aµ , C4 = σ−2η P′P + aI2 ,

ψ̃m =

 ψ̃m,1...

ψ̃m,25

 , ψ̃ =

 ψ̃1
...

ψ̃M

 , Pm =

1 pm,1 − p∗
...

...
1 pm,25 − p∗

 , P =

 P1
...

PM

 ,
γ|� ∼ MVN

(
C−16 c5,C

−1
6

)
(14)

c5 =
H′(p− φ)

σ2ζ
, C6 =

H′H
σ2ζ

+ aI5 ,hmr =


xmr1
xmr2

xmr1xmr2
x2mr1
x2mr2

 , Hm =

h
′
m,1
...

h′m,25

 , H =

H1
...

HM

 ,
τ2
∣∣ � ∼ IG

(
a1 + (25M − 1)/2, a2 + (1/2)φ′(D−W)φ

)
, (15)
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σ2m
∣∣ � ∼ IG

(
a1 + (1/2)

∑
r

Kmr, a2 + (1/2)
∑
r

Kmr∑
k=1

(qmrk − α3ψ̃mr)
2
)
, (16)

σ2δ
∣∣ � ∼ IG

(
a1 +M/2, a2 + (1/2)

∑
m

(vm − α0 − α1ψm)2
)
, (17)

σ2η
∣∣ � ∼ IG

(
a1 + 25M/2, a2 + (1/2)

∑
m,r

[ψ̃mr − β0 − β1(pmr − p∗)]2
)
, (18)

σ2ζ
∣∣ � ∼ IG

(
a1 + 25M/2, a2 + (1/2)

∑
m,r

(
pmr − h′mrγ − φmr

)2 )
. (19)

4.2. Metropolis-Hastings step for updating ψmr

Unlike Chiu and Lehmann (2011), here we cannot implement (8)–(19) with a pure Gibbs sam-
pler due to the non-standard distribution of ψmr from (9). Instead, we employ a Metropolis-
Hastings (MH) step (e.g. see Hoff 2009) for (9). First, take

J(ψmr|z, ν) =
νν

Γ(ν)

ψν−1mr exp{−νψmr/z}
zν

(20)

to be the proposal distribution for ψmr. This is a Gamma distribution (positive real) with
mean z and shape parameter ν (so that the scale parameter is z/ν). Here, ν is the MH tuning
parameter chosen so that J is right-skewed and unimodal.4 Next, the acceptance ratio is

Rν

(
ψ∗mr, ψ

(t)
mr

)
=
f
(
ψ∗mr

∣∣∣θ(t)−ψmr
, q,vobs,p

)
f
(
ψ
(t)
mr

∣∣∣θ(t)−ψmr
, q,vobs,p

) × J
(
ψ
(t)
mr

∣∣∣ψ∗mr, ν)
J
(
ψ∗mr

∣∣∣ψ(t)
mr, ν

) =⇒ (21)

logRν

(
ψ∗mr, ψ

(t)
mr

)
=
(c11mr

2
+ 2ν − 1

)
log

ψ
(t)
mr

ψ∗mr
+
c21mr

2

[
(logψ(t)

mr)
2 − (logψ∗mr)

2
]

+ (22)

c12mr
2

(
ψ(t)
mr − ψ∗mr

)
+
c22mr

2

[
(ψ(t)

mr)
2 − (ψ∗mr)

2
]

+ ν

(
ψ∗mr

ψ
(t)
mr

− ψ
(t)
mr

ψ∗mr

)

where f and J in (21) are from (9) and (20), respectively.

5. Inference results

As it was infeasbile to apply our current modelling framework and computer implementation
to all days for which AMSR-E, ASAR, and AP data are available, we focused on selected
January and June dates between 2005 and 2009 to demonstrate our methodology. Selec-
tion criteria were largely based on data abundance for both SM products within the MRC
boundaries. This was because (a) large amounts of missing AMSR-E data would substantially
increase the already high-dimensional parameter space and thus weaken the inference, and
(b) blending of the two SM products would be less meaningful given a small swath of ASAR
image. For a few of the selected dates, MCMC mixing was such that convergence could not

4For our data, MCMC mixing is satisfactory for many datasets with ν=2. Our other values of ν led to little
difference in mixing.
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v, v̂ q p

ψ̂s SD(ψs|data) φ̂

Figure 3: MRC data and inference for 2006-06-17. A“̂”denotes the posterior mean as an esti-
mate of the corresponding quantity, e.g. v̂ refers to imputed AMSR-E (pixel outlined in pink).

be reached within a reasonable run-time, although this might be mitigated by incorporating
temporal smoothing via an integrated spatio-temporal model. While such extension is in-
tended for the future, in this paper we report results on the remaining eight selected dates
that yielded proper Bayesian inference for SM over the MRC under manageable run-times.

5.1. Latent soil moisture — a blended product

Note that according to the model in Section 3, ψ is merely a quantity that is driven by AP (p),
which in turn is the driver for AMSR-E (v) and ASAR (q) observations. For communications
purposes, we define the scaled latent SM, ψsmr = α0 + α1ψmr, so that according to (1), both
ψsmr and v are in %volume; the former is the quantity of main interest when referring to the

inference for SM. Specifically, ψ̂s (posterior mean of ψs) can be considered an SM product
from blending AMSR-E and ASAR while making use of covariate information in the form of
AP and spatial coordinates.

Fig. 3 presents some data and inference maps for 2006-06-17. This figure (and all others in

Supp. Section S1) shows that the blended product ψ̂s and its uncertainty (represented by
the posterior SD) are not spatially smooth, clearly showing the footprint of ASAR due to its
limited coverage of the MRC. This feature is not surprising, as the model accounts for ASAR
as well as AMSR-E only when data are present for both. Over the large regions where ASAR
data are absent, the inference for ψs is due only to AMSR-E, if observed, alongside covariates.
Thus, unless all the AMSR-E, ASAR, and AP datasets are mutually consistent, one can expect
the ASAR footprint to be visible in ψ̂s and SD(ψs|data) — for the latter, in the form of low
uncertainty relative to the rest of the MRC. The ASAR footprint is understandably more
pronounced when the three datasets are less consistent, e.g. 2006-06-17.

Aside from latent SM, the spatial random effect, φ, is of additional interest, at least from a
modelling perspective. Within the model hierarchy, φ accounts for spatial patterns of AP not
addressed by the spatial coordinates through the trend surface hγ( ). With the coefficients γ
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Figure 4: AMSR-E posterior predictive inference for 2006-06-17: SD (left, green-blue colour
spectrum); coverage of nominal 95% CIs (right, tritone) with turquoise=covered, red=missed,
white=no data.

being non-negligible,5 clear spatial features of φ̂ would suggest the crucial role that it plays in
the model hierarchy. Such features are obvious in Fig. 3; this is indeed the case for all dates
examined (see Supp. Section S1 for other dates).

5.2. Error characterization for AMSR-E and in-sample model validation

To evaluate the model-based uncertainty of AMSR-E data across the MRC under the statis-
tical framework of this paper, we examine f(vpred|data), the posterior predictive distribution
for AMSR-E (see Appendix A2). (Note that v̂ in Fig. 3 is the mean of f(vmis|data) which can

be considered a posterior predictive distribution.) Specifically, using f(vpredm |data) across m,
we produce a map for the posterior predictive SD. Fig. 4, left panel presents such a map for
2006-06-17 (see Supp. Section S1 for the remaining 7 dates). Aside from (a) a slight tendency
of higher uncertainty east of 148◦E and (b) a cluster of pixels near (150◦E, −35.5◦N) with
highest uncertainty, the AMSR-E uncertainty map shows no recognizable spatial patterns for
this date. In fact, the generally patternless nature of the AMSR-E uncertainty map aside
from (a) is also evident for 2005-06-13 as well as the remaining 6 dates.

In addition to the SD, 95% credible intervals (CIs) for vpredm can be presented if desired.
Instead, here we present the coverage map of these predictive CIs against vobsm and use the
associated information for model validation. Fig. 4, right panel, presents such a map for
2006-06-17 (see Supp. Section S1 for the remaining 7 dates). According to the 8 maps, there
is one recognizable trend, namely, failed coverage typically happens over AMSR-E pixels
where either AMSR-E disagrees with ASAR and/or AP, or it disagrees with AP with ASAR
missing. By “disagreement,” we mean that AMSR-E is high and ASAR and/or AP is low and
vice versa, relative to the entire MRC. An exception is 2005-06-13, for which failed coverage
happens over a region of agreement between AMSR-E and AP (with ASAR missing), roughly
where AMSR-E is at least 50 %volume. This can be explained by the fact that, on this date,
the three datasets disagree over vast regions of the MRC (see Fig. 1), so that the support of
f(α1|data) is almost entirely negative, and that of f(β1|data) is virtually negative.6

For validation of our model in Section 3, we examine the coverage rate summarized in Table 1.
Of the 8 dates, three have slight over-coverage and the rest, slight under-coverage. Overall, the
near-nominal coverage is one indication that reasonable inference is provided for the MRC.
This is true despite that on 2007-06-15 ψ̂s values exceed 100 %volume for isolated pixels
(see Supp. Section S1). Those anomalies near 147–148.5◦E and −36.5◦N all correspond to

5Very few dates examined had negligible γ4 and/or γ5.
6All MCMC draws are negative.
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Table 1: Coverage of nominal 95% posterior predictive CIs for AMSR-E on dates examined.

Season Date # Missing Pixels Observed Coverage (%)

Summer 2007-01-18 12 96.33
2008-01-11 22 93.10
2009-01-22 20 95.55

Winter 2005-06-13 10 93.71
2006-06-17 1 93.57
2007-06-15 3 95.47
2007-06-24 2 93.55
2007-06-26 0 92.31

the highest AMSR-E values and very high AWAP values, where ASAR is masked. Those
anomalies near 147.8◦E and −35◦N correspond to a missing AMSR-E pixel, where ASAR
and AWAP disagree substantially. Nevertheless, out-of-range ψs values reveal a limitation
of our model: it does not explicitly constrain ψs between 0 and 100. Instead, (1) implicitly
constrains the mean of ψsmr over the mth AMSR-E pixel to be the mean of vm (which is

strictly between 0 and 100). Despite this limitation, vpredm on 2007-06-15 is well within (20,
75) everywhere (not shown), and the coverage of nominal 95% posterior predictive CIs is very
close to 95% (Table 1).

If desired, posterior prediction can be similarly applied to characterize the uncertainty of
ASAR and to provide further model validation.

6. Conclusion and future work

As far as we are aware, Chiu and Lehmann (2011) were the first to advocate the use of a
hierarchical statistical model for blending multiple soil moisture products. Yet, their work
has minimal practical implications in this regard because, admittedly, the influence of ground
probe data from 38 sparsely situated stations is hardly noticeable when blended with the
areal product, AMSR-E, with wide spatial coverage. In this paper, we have reformulated
their modelling framework to blend two areal products, the aforementioned AMSR-E of low
spatial resolution with wide coverage, and ASAR, with high resolution but limited coverage
on any given day. Compared to Chiu and Lehmann (2011), our results show a heavy influence
of ASAR in the blended product, particularly due to the overwhelming volume of ASAR data
compared to AMSR-E within an observed region (up to 3600:1). Interestingly, when only 38
randomly selected ASAR pixels were blended with AMSR-E, the resulting blended product
resembled that by Chiu and Lehmann (2011) in that they both show features of AMSR-E.

The heavy influence of ASAR swaths on the inference for MRC soil moisture also implies a
visible ASAR footprint in the blended product. To investigate if spatially aggregating ASAR
would improve the smoothness of the blended product, we modified our model from Section 3
to involve a latent areal ASAR quantity, λmr, over an AWAP pixel. Specifically, we modified
(2) so that qmrk|λmr, σ2m ∼N(λmr, σ

2
m) and λmr|ψmr, α3, σ

2
ε ∼N(α3 logψmr, σ

2
ε). Indeed, Fig. 5

shows that this model-based aggregation of ASAR greatly improved the smoothness of the
blended product, although at the expense of model complexity due to 312×25 additional
model parameters. While the simpler model from Section 3 of this paper produces a blended



Journal of Environmental Statistics 13

v, v̂ ψ̂s SD(ψs|data)

λ̂ ψ̂smod SD(ψsmod|data)

Figure 5: Inference for 2007-06-24 using the model in Section 3 (top row) and that modified
to include model-based aggregated ASAR (bottom row). The ASAR footprint is visible from
the inference for ψs and λ towards the western edge of the rectangular region over the MRC.

product that lacks smoothness, it performs well from a predictive standpoint. Specifically,
when judged by the coverage of posterior predictive credible intervals produced for AMSR-E
data, the observed credibility was very close to the nominal 95%. Model validation aside,
this posterior predictive distribution for AMSR-E allowed us to characterize the uncertainty
in satellite data, an objective of high concern to the remote sensing community who relies
on satellite measurements of earth-bound physical quantities. The reasonable predictive in-
ference here also reiterates the notion that data perceived as potentially uninformative could
be incorporated in a statistical framework to safeguard against biased assimilation, without
necessarily sacrificing predictive performance for quantities of interest.

Finally, despite the loss of a popular source of remotely sensed soil moisture data due to the
recent failure of AMSR-E, we can anticipate new areal soil moisture products to emerge in the
foreseeable future as a result of advancement in remote sensing technology. The modelling
framework of this paper then can be adapted to blend areal products, old and new, while
taking advantage of relevant covariates as ancillary information. Various directions may be
considered when modifying the current framework:

1. Level in the hierarchy at which spatial autocorrelation is modelled. Our current work
considers spatial dependence to be fully attributable to the spatial autocorrelation in AWAP
data. An alternative approach is to collapse (3) and (4) so that latent SM is modelled as
a response of spatial coordinates x alongside AWAP, with spatially autocorrelated residuals.
This collapsed model would be easier to implement, although MCMC mixing may worsen
unless reparametrizations such as hierarchical centring (Gelfand et al. 1995) is employed.

2. Seasonal definition of pmr. As mentioned in Section 3.3, AWAP data may require different
transformations for different seasons of the year, depending on which areal products are being
modelled.

3. Logit transform of ψmr. To ensure that ψs falls inside (0, 100), a logit transform of latent
SM could be considered as an alternative to the logarithmic transform for defining ψ̃mr.
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4. Incorporating temporal smoothing. Unifying temporal and spatial smoothing in a single
model is substantively more involved than the spatial-only approach of this paper. Chiu (2011)
suggests a preliminary spatio-temporal model that is separable and stationary; temporal
smoothing is incorporated via sinusoidal basis functions plus an autoregressive-moving-average
temporal noise process.

Acknowledgments

The research in this paper was funded by the Water Information Research and Development
Alliance between the CSIRO Water for a Health Country Flagship and the Australian Bureau
of Meteorology. Model implementation in C++ was funded by eResearch through CSIRO
Advanced Scientific Computing. G. Chiu and E. Lehmann thank the Special Issue Editors
and Referee, and Drs. S. Bakar and P. Kokic (CSIRO Mathematics, Informatics and Statistics)
for their valuable suggestions; Dr. L. Renzullo, Dr. B. Henderson, and fellow team members
of the AWRA Model-Data Fusion Project for their ideas and support; and Prof. P. Guttorp
(University of Washington) for his invitation to G. Chiu to present the foundational work of
this paper at the TIES 2012 Conference.

References

Aubert M, Baghdadi N, Zribi M, Douaoui A, Loumagne C, Baup F, El Hajj M, Garrigues
S (2011). “Analysis of TerraSAR-X Data Sensitivity to Bare Soil Moisture, Roughness,
Composition and Soil Crust.” Remote Sensing of Environment, 115, 1801–1810.

Banerjee S, Carlin BP, Gelfand AE (2004). Hierarchical Modeling and Analysis for Spatial
Data. Chapman and Hall/CRC, Boca Raton.

Betson RP (1964). “What Is Watershed Runoff?” Journal of Geophysical Research, 69,
1541–1552.

Chiu, GS (2011). “Statistical model-based alternatives to integrate and evaluate soil moisture
products.” Technical Report #CMIS2011-EP11722. CSIRO Mathematics, Informatics and
Statistics.

Chiu GS, Lehmann EA (2011). “Bayesian Hierarchical Modelling: Incorporating Spatial
Information in Water Resources Assessment and Accounting.” In F Chan, D Marinova,
and RS Anderssen (eds.), “MODSIM2011, 19th International Congress on Modelling and
Simulation,”, ISBN: 978-0-9872143-1-7, URL http://www.mssanz.org.au/modsim2011/.

Cressie N, Wikle CK (2011). Statistics for Spatio-Temporal Data. Wiley, Hoboken.
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Appendices

A1. MCMC algorithm and implementation

Below is our overall MH-within-Gibbs sampling algorithm for approximating (7). The index
t denotes the tth MCMC scan.

1. Set t=0. Specify reasonable starting values Ω(0),φ(0), and ψ(0) (see Supp. Section S2).
2. Increment t. If the Markov chain has not converged, then do Steps 3–8.
3. Sample vmis(t) according to (8) with relevant parameters from the preceding t.
4. Do Step 4a in parallel over m=1, . . . , M .

(a) (Note that this step affects c12,m,r+1.) For r=1, . . . , 25, perform the following:

i. propose ψ∗mr by sampling from (20) with z = ψ
(t−1)
mr where the superscript

(t− 1) corresponds to the preceding t;
ii. compute Rν by exponentiating (22) and substituting in it relevant parameters

from (I) the preceding t, (II) Step 3, and (III) if r>1, then also Step 4a from
the preceding r;

iii. sample U ∼ Unif[0, 1] and set

ψ(t)
mr =

{
ψ∗mr (i.e. accept proposed) if Rν > U

ψ
(t−1)
mr (i.e. reject proposed) otherwise

.

5. In parallel with Step 4, do as follows.

(a) (Note that this step affects c01,i+1.) For i=1, . . . , 25M , sample φ
(t)
i according to

(10) with relevant parameters from (i) the preceding t and (ii) if i>1, then also
Step 5a from the preceding i.

(b) Centre φ
(t)
1 , . . . , φ

(t)
25M by applying the reassignment φ

(t)
i ← φ

(t)
i − φ

(t)
.

6. Do the following in parallel:

(a) Sample α
(t)
3 according to (11) with relevant parameters from (i) the preceding t

and (ii) Steps 3–4.

(b) Sample [α
(t)
0 , α

(t)
1 ]′ according to (12) with relevant parameters from (i) the preceding

t and (ii) Steps 3–4.
(c) Sample β(t) according to (13) with relevant parameters from (i) the preceding t

and (ii) Step 4.
(d) Sample γ(t) according to (14) with relevant parameters from (i) the preceding t

and (ii) Step 5b.
(e) Sample τ2(t) according to (15) with relevant parameters from Step 5b.

7. Do the following in parallel:

(a) For each m, sample σ
2(t)
m according to (16) with relevant parameters from Steps 3,

4, and 6b.

(b) Sample σ
2(t)
δ according to (17) with relevant parameters from Steps 3, 4, and 6a.

(c) Sample σ
2(t)
η according to (18) with relevant parameters from Steps 4 and 6c.

(d) Sample σ
2(t)
ζ according to (19) with relevant parameters from Steps 5b and 6d.

8. Return to Step 2.
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MCMC implementation and data analyses were performed in R 2.14 and above (serial and
parallel) and C++ (serial). For sparse matrix algebra and parallelization in R, we used
the packages Matrix (http://r-forge.r-project.org/projects/matrix) and snow (http:
//cran.r-project.org/web/packages/snow/index.html), respectively. For our data, we
identified that parallelization in R within Step 4 led to major reduction in computational time,
while parallelization across and within the other steps often increased computational overhead.
We subsequently incorporated C++ into Steps 4 and 5 of the original R implementation using
the package Rcpp (Eddelbuettel and François 2011). The directed use of C++ gave the
highest performance code, with an approximate speedup of 20 times the serial version in
R. Parallelization of the C++ code was deemed unnecessary by the compiler’s automatic
parallelizer.

A2. AMSR-E posterior predictive distribution

Let θ={vmis,ψ,φ,Ω}. Then,

f
(
vpred

∣∣∣ data
)

=

∫
θ
f
(
vpred

∣∣∣θ,data
)
f (θ| data) dθ =

∫
θ
f
(
vpred

∣∣∣θ) f (θ|data) dθ (23)

where f (θ|data) is equivalent to (7). We approximate (23) by making use of the MCMC
approximation of (7), as follows. Given the tth draw θ(t) from f(θ|data), sample vpred(t)

from f(v|θ(t)) according to (1), i.e. sample

vpred(t) ∼ MVN
(
α
(t)
0 + α

(t)
1 ψ

(t)
, (σ

(t)
δ )2IM

)
.

The set {vpred(t) : t=1, 2, . . . } constitutes an approximation to (23). (See, e.g. Hoff 2009, for
details of MCMC approximations for posterior predictive distributions).
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