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Abstract

A common problem in the analysis of space-time data is to compress a large
dataset in order to extract the underlying trends. Empirical orthogonal function
(EOF) analysis is a useful tool for examining both the temporal and the spatial
variation in atmospherical and physical processes, and a convenient method of per-
forming this is the Singular Value Decomposition (SVD). Many spatio-temporal
models for measurements Z(t, s) at location s at time t, can be written as a sum of
a systematic component and a residual component: Z = M+E, where Z, M and E
are all T ⇥N matrices. Our approach permits modeling of incomplete data matri-
ces using an EM-like iterative algorithm for the SVD. We model the trend, M, by
linear combinations of smooth temporal basis functions derived from left (temporal)
singular vectors of Z with the dimension of the model chosen by cross-validation.
We further decompose by SVD the spatio-temporal residual matrix E computed as
residuals from regressions at each site (column) of the observations on smoothed
temporal basis functions. Finally we fit an autoregressive model to the columns
(time series) of residuals from the SVD of E. Our aim is to illustrate a simple model
to characterize trends and model the variability in large spatio-temporal data ma-
trices. The methodology is demonstrated with 30 years of daily temperature data
from Sicily; we obtain a good fit and a compact description of the spatio-temporal
variability using just a few smoothed singular vectors.
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1. Introduction

Spatio-temporal processes such as environmental processes are complicated. They arise
from multiple factors, biological and physical, and interactions of various processes that
occur at various scales in space and time. A model, in its simplified abstract view of the
complex reality, becomes very useful in this context. There are several approaches to
modeling, and we believe that a simple hierarchical modeling approach is helpful. We
present a model based on Empirical Orthogonal Functions (EOFs) computed by SVD.
Empirical orthogonal functions are not a tool specific to the environmental sciences,
but are widely used in a number of scientific domains under di↵erent names: proper
orthogonal decomposition (POD) or Karhunen-Loève decompositions are mostly used
in a functional framework, whereas the matrix versions (working on discrete datasets)
are called proper orthogonal modes (POM), principal component analysis (PCA), factor
analysis, or empirical orthogonal function analysis (Beckers and Rixen 2003).
We use the SVD decomposition to compute the EOFs, which decomposes a time-space
matrix Z[T⇥N ], for T indicating time and N indicating the sites, of real-valued data and
rank k as a product of three matrices:

Z = UDV0 (1)

where U is a T ⇥ k orthogonal matrix with columns uj , V is a N ⇥ k orthogonal
matrix with columns vj and D is a k ⇥ k diagonal matrix with diagonal entries dj

typically taken to be a decreasing sequence of nonnegative numbers, for j = 1, ..., k,
where k = min(N,T ). In the application below T > N , so k = N . For the purposes of
this first SVD, the uj and vj represent a set of temporal and spatial empirical orthogonal
functions (EOF), respectively.
The appeal of the singular value decomposition is partly due to its interpretation as
a multiplicative model based on row and column factors. Letting the elements of the
temporal (left) singular vectors uj be written as uj(t) and the elements of the spatial
(right) singular vectors vj be denoted by vj(s), the spatio-temporally indexed datum
Z(t, s), can be written as a sum of products of spatial and temporal variables: Z(t, s) =PN

j=1 djuj(t)vj(s). If it su�ces to approximate Z by just its first EOF, then we are
saying that Z(t, s) ⇡ d1uj(t)v1(s), i.e. the spatiotemporal process can be approximated
by a separable process (Banerjee, Carlin, Gelfand, and Raton 2004).
An important thing to point out is the direct relation between PCA and SVD in the
case where principal components are calculated from the covariance matrix. In fact
centering each column of the Z(t, s) matrix by the vector of column averages, then
Z0Z = VD2V0 is a T ⇥ T matrix that is proportional to the sample spatial covariance
matrix. Then the diagonalization of Z0Z yields V0, which also constitutes the principal
components of columns variables; the vj are the same as the principal components of
the column variables, i.e. sites, and the eigenvalues of Z0Z are equivalent to d

2
j (Wall,

Rechtsteiner, and Rocha 2003). The SVD of Z provides a one-step method for computing
all the components of the eigenvalue problem, without having to compute and store large
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covariance matrices. It produces two orthonormal bases, one defined by right singular
vectors and the other by left singular vectors, that span the space of variation over time
and the space of spatial variation over the sites, respectively. Then according to our
interest in the relations between observations over time or in the variation across sites
we may express the signal of interest by linear combinations of right singular vectors or
by left singular vectors.

Our analysis involves two SVD computations and a temporal correlation model. We
first model temporal trend, M, by linear combinations of smoothed orthogonal temporal
basis functions, derived from the singular value decomposition of Z, with the number of
smooth basis functions chosen by a cross-validation criterion to explain spatially varying
seasonality and long-term trend. We then decompose, again using SVD, the spatio-
temporal matrix E of residuals from the linear models fitted at each site to the temporal
trend basis functions from the first SVD fit. This second SVD represents short scale
temporal processes that are also correlated in space. We finally fit autoregressive models
to the columns of residuals from this second SVD. Our aim is to illustrate a simple
model to describe the spatio-temporal trends and residual variability in a large spatio-
temporal data matrix. The methodology was applied to a spatiotemporal dataset of
daily temperature averages observed at fifty monitoring sites on the island of Sicily
over thirty years, 1965 � 1994. The analysis shows a good fit and provides a compact
description of the spatio-temporal variability using just a few smoothed singular vectors.
In the next section we show the dataset under study; section 3 presents the proposed
model and a simulation study; section 4 illustrates the application of the model to the
above-mentioned dataset, and conclusions follow in section 5.

2. The data and the study area

We analyze a spatiotemporal dataset of daily temperature averages observed at fifty
monitoring sites, belonging to the Sicilian Regional Hydrographic Service, from 1965
to 1994 in Sicily, the largest island in the Mediterranean with a total area of about
25, 000km

2 extending in latitude between 36� and 38� north and longitude between 12�

and 15� east. Despite the geographic situation of a very complex area, with unique
morphological aspects, you can divide the Sicilian territory into three distinct regions:
the northern, the southern and eastern sides. Sicily is characterized by a mesothermic
humid sub-tropical climate with dry summers. Its surface is mostly covered by plains;
a mountain chain runs along the North-East side of the island and an active volcano is
at the lower end of the chain on the East coast; the central and south-western is mainly
hilly.

Monitoring sites spanning the area show very hight temporal long memory and very high
spatial correlations ranging from 0.86 to 1. A few of the sites have data missing for long
periods and in general about 10% of the entire dataset is missing.
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3. Model formulation

Denoting by N the number of sites s1, ..., sN and by T the number of observations for each
site, it is common in the space-time modeling literature to decompose the measurement
at location s at time t into the sum of a systematic trend component and residuals

Z(t, s) = M(t, s) + E(t, s) (2)

where M(t, s) denotes the mean structure and E(t, s) denotes the residual process. The
allocation of total spatial and temporal variation between these two components is partly
the decision of the modelers based on their understanding of the problem and partly a
statistical decision based on model fit and parsimony. A flexible model is useful to
provide such discretion. Here, we use a nonparametric approach to model the spatio-
temporal mean field of a random field, an approach first introduced in Fuentes, Guttorp,
and Sampson (2007). This approach starts with decomposing the matrix Z using SVD
and, applying cubic smoothing splines to some of the left singular vectors, decomposes
the trend as follows:

M(t, s) = �s0 +
JX

j=1

�sjfj [uj(t)] (3)

where:

• �s0 is the long term average of the site s;

• J is the number of left singular vectors in the singular value decomposition of
Z = UDV

0 chosen by Cross-Validation across the sites;

• fj [uj(t)] are orthogonal temporal basis functions (cubic smoothing splines);

• �N⇥J is the matrix of trend coe�cients estimated by multiple linear regression on
the smoothed basis functions f . Because of the spatially varying nature of these
coe�cients could be modeled as spatial random fields.

Following the above methodology we are able to account for the very strong seasonal
cycle of atmospheric temperature and long-term trends. Moreover since the phase and
amplitude of the seasonal cycle (not necessary sinusoidal) vary as a function of space,
the parameters describing the seasonal cycle, �sj , are allowed to vary as a function of
latitude and longitude; they represent a spatial field underlying the process of interest.
Also, since the numerical SVD algorithms requires a full matrix Z we apply an“EM-like”
iterative algorithm for the SVD as in Fuentes et al. (2007).
We may further decompose the spatiotemporal residual matrix E as a sum of a mean zero
spatiotemporal process, w(.) and a temporally correlated noise process, ✏(.): w(t, s) +
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✏(t, s). We derive this from a second SVD,

E(t, s) =
KX

k=1

d

(2)
k u(2)

k (t)v0(2)
k (s) + ✏(t, s) (4)

• u(2)
k (t)v0(2)

k (s) and d

(2)
k are the kth EOF and singular value in the singular value

decomposition of E and it is a mean-zero spatio temporal process;

• ✏(t, s) is a matrix of time series each modeled as AR(L),

✏(t, s) =
LX

l=1

�l(s)✏(s, t� l) + ⌘(s, t), (5)

for s = 1, ..., N and ⌘ ⇠ N(0, �⌘).

The second decomposition, (4), yields another reduction in dimension, representing E

as a sum of K products of a spatial process and a temporal process. This second SVD
is useful to reduce the autocorrelation of residuals; also, it reduces the residual sum of
squares when we compare this model with a model with no second SVD but just with
more smoothed basis functions. What is left then is only a set of low order autoregressive
models for each site.
The idea behind this final model is that each site has an individual story with its own
pattern over years and geographic location, but at the same time they lie in the same
area and they share common weather. After all the main structure has been removed,
each site should follow an individual residual model that allows for filtering out most of
the short-range temporal correlation typical of meteorologically driven data such as air
pollution data (Meiring, Guttorp, and Sampson 1998).

3.1. Choosing the number of components

The choice of the number of temporal basis functions, the dimension of the model, is
often based on a heuristic approach. The magnitude of any one singular value is in-
dicative of its importance in explaining the data. Therefore scree plots (Cattell 1966)
illustrating the fraction of total variance in the data explained by each principal compo-
nent d

2
j/

PN
j=1 d

2
j , have been proposed as a graphical method to decide on the number

of important components.
In our particular case of modeling through SVD, we may take into consideration the
typical e↵ect of the SVD on covariance matrices, namely to concentrate most of the
explained variation in the first component. To partially solve this problem, higher order
of smoothing of the temporal basis can be used, and we note that the more we smooth
these basis functions, the less structure we catch in the systematic trend. This increased
smoothing leaves more variability in the residual matrix E (as the simulation section
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shows). Also, a stronger autocorrelation structure of the left singular vectors obtained
after the second SVD is highlighted.
Our method of component selection uses the Bayesian Information Criterion, BIC (also
known as the Schwarz Criterion), computed for cross-validation fits leaving out a subset
or just one monitoring site at a time. In addition to this criterion, the amount of
variability explained by components is also taken into consideration for the final choice.
Starting from a first guess of the number of components, say j, we leave out a random
subset of sites, then we follow these steps:

• Compute the SVD;

• Smooth the J left-singular vectors using cubic smoothing spline with smoothing
parameter chosen by generalized Cross Validation (GCV);

• Compute the trend prediction of every site in the left out cross validation group
by least squares regression on the smoothed trend components and evaluate the
BIC criterion.

After we get a vector of BIC values we redo the previous steps with j + 1 components,
getting again a vector of BIC values. We run again those steps varying the number of
components and the number of left out sites, in this way we will get sites showing better
fits according to BIC with more components and some sites with fewer components.
Therefore, we choose the number of components with better BIC values for the most
sites in these cross-validated fits.

3.2. Simulation study

To test the capability of the model to reproduce an original signal we carried out a
simulation study on 1000 synthetic realizations of a spatial process with time evolution.
These 1000 matrices have dimension T ⇥N where T = 10957 and N = 50 and they have
been generated with a structure similar to the real data set illustrated in the next section,
i.e. as a systematic trend with three principal components, one empirical orthogonal
function for the mean zero process noise component w(t, s) of the decomposition of
equation (4), and a matrix of time series for columns, each of them generated from
AR(2) models. To assure that we are generating data from three clearly distinguishable
components, we specify the first three singular values equal to 5000, 500 and 50 and
zero for the higher orders while the left and right singular vectors are taken from the
Sicily data analyzed in the next section. Also the first EOF elements, U

(2) and V

0(2)

of equation (4), are generated as AR(3) and Gaussian random field, respectively, with
autoregressive parameters and partial sill and range values estimated from the Sicily
data (partial sill and range are maximum likelihood estimates). We use the real data
to estimate the autoregressive parameters for the generation of the columns of the final
residual matrix, ✏. That is, we consider the scenario described by

Z = UDV0 + E = UDV0 + U(2)V0(2) + ✏ (6)
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where:

U is a matrix of left singular vectors 10957⇥ 50;

D is a matrix of eigenvalues with the first three diagonal entries equal to 5000, 500, 50
and zero elsewhere;

V is a matrix of right singular vectors 50⇥ 50;

U(2) is a vector of length 10957 from an AR(3) with ⇢1 = 1.275 ⇢2 = �0.529 and
⇢3 = 0.072;

V0(2) is a Gaussian random field with Exponential covariance function and parameters
�

2 = 0.0009 and � = 0.32;

✏[T⇥N ] is a matrix where each column are generated from AR(2) with
⇢1 2 (0.408, 0.774) and ⇢2 2 (�0.066, 0.216) for s = 1, ..., N ;

In these synthetic datasets, we know the true signal (components or singular vectors) and
the noise, so that we can make all necessary statistical comparisons and error analyses
of the true and estimated components. We consider a simulation study similar to the
one presented by Beckers and Rixen (2003) and for each generated matrix we consider
the following three matrices:

• Zt = UDV0, a matrix representing the true expectation value we want to repro-
duce, for fixed value of U , D, and V

0 in the scenario;

• Zp = UDV0+E, a matrix that, for each replication, represents the true expectation
value perturbed with a simulated noise component;

• Za, a matrix representing what we really observe, obtained from Zp removing
randomly 20% of the values.

For each of these matrices we compute their estimation through SVD and evaluate the
error after the first SVD in terms of mean square error. In particular the mean square
error, MSE, between the absolute values of the true left and right singular vectors (the
ones from Sicily data we used to make the scenario (6)) and the left and right singular
vectors estimated from the SVD in the case of missing data:

MSEu =
⌃T

i=1(|u|i,k � ˜|u|i,k)2

T

MSEv =
⌃N

j=1(|v|j,k � ˜|v|j,k)2

N

(7)

and pairwise mean square error of every element (absolute values) of the singular decom-
position estimated from each of the three matrices previously shown, where we indicate
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the comparison of the SVD elements between Zt and Zp by (tp), between Za and Za by
(at) and between Za and Zt by (at):

MSEu,(tp) =
⌃T

i=1( ˜|u|ik,(t) � ˜|u|ik,(p))
2

T

same for MSEu,(ap) and MSEu,(at) (8)

MSEv,(tp) =
⌃N

j=1( ˜|v|jk,(t) � ˜|v|jk,(p))
2

N

same for MSEv,(ap) and MSEv,(at) (9)

MSEd,(tp) = ⌃N
j=1(d̃j,(t) � d̃j,(p))2 same for MSEd,(ap) and MSEd,(at)(10)

for i = 1, ..., T , j = 1, ..., N and k = 1, 2, 3.
The consideration of absolute values in these MSEs is due to the fact that simulations
result in randomly signed singular vectors, creating a bimodal mean square error distri-
bution unless we consider only the absolute values of the components of the vectors.
If we focus on a only one realization of this scenario we observe the following first six
estimated singular values vectors: (4999.59, 511.02, 118.91, 110.92, 109.88, 109.77) and
(4999.64, 510.57, 118.18, 111.54, 110.67, 110.53) for the Za and Zp matrices, respectively;
while the following vectors: (0.00000004, 0.000004, 0.00006, 0.0002, 0.00009, 0.0001),
(0.00000007, 0.000005, 0.0014, 0.02, 0.02, 0.02) and (0.12, 121.8, 4749.1, 12302.4, 12073.4,

12048.7) for MSEu,(at), MSEv,(at) and MSEd,(at), respectively.

Table 1: Mean values of the first six estimated ds for the three matrices Ztp, Zap and
Zat over 1000 simulated datasets.

Average of estimated singular values
d̄1 d̄2 d̄3 d̄4 d̄5 d̄6

d̃Zt 4999.932 499.980 49.997 ⇠ 0 ⇠ 0 ⇠ 0
d̃Zp 5002.554 526.623 198.638 195.176 192.246 189.695
d̃Za 5002.650 528.059 203.029 193.514 190.214 187.197

For a global point of view of the singular values analysis in this scenario we look at
the 1000 simulations and, as Table 1 illustrates, we note the noise added to the data
increases all singular values compared to the unperturbed field, and this means that
some of the noise structure has been interpreted as part of the smooth signal. Table 1
also shows that the third component is more a↵ected by the noise than the first two,
particularly for the matrices Zp and Za, as we would expect from its relatively small
singular value. The singular values obtained from the Za are of the same magnitude as
those from Zp. The magnitude of the second and third smoothed components going from
Zp to Za is overestimated (from 526.62 to 528.06 and from 198.64 to 203.03), while for
the higher smoothed components is underestimated (from 195.18 to 193.51, from 192.25
to 190.21 and from 189.69 to 187.2). It seems that the amount of missing data specified
here results in little influence the estimation of the singular values and the number of
components to choose.
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Figure 1: MSE average for the first 6 components computed over 1000 simulated matrices
generated as three principal components. We note that the MSE increases from the third
component for all the three SVD components in all the pairwise comparison between the
matrices Ztp, Zap, Zat.
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Figure 1 shows the average MSE for the first 6 components computed over 1000 sim-
ulated matrices generated with three principal components, and we see that the MSE
increases, as expected, from the third component on for all three SVD components in
all the pairwise comparisons between the matrices Ztp,Zap,Zat. Even if we generate ob-
servations from a model with three clearly distinct components, the fact that the third
singular value (equal to 50) is closer to the higher order singular values (all zero) than
to the first and the second (5000, 500) makes the third component di�cult to estimate
when the systematic trend is perturbed.
Figure 2 illustrates that the MSE between the true and the estimated left and right
singular vectors, according to (7), has almost a uniform distribution, despite that we
would expect an asymmetrical shape for the mean square error empirical distribution.
This is an e↵ect of bias introduced from the stochastic part, and is very evident for the
temporal elements of the SVD, the uj .
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Figure 2: MSE histograms of the first 3 true components and the estimated ones.
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Figure 3, according to (8), (9) and (10), shows the MSE histograms for the first 3 com-
ponents computed over 1000 simulated matrices generated with three principal compo-
nents, in the comparison between Zt and Za. Most of them show positive asymmetry as
expected for the empirical distribution of the mean square error.
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Figure 3: MSE histograms of the first 3 components of Za and Zt computed over 1000
simulated matrices generated with three principal components.

An analogous simulation study has been run varying both the parameters and the
covariance function for generating the Gaussian random field V0(2). We considered
� = 0.1, 0.5, 1, 10, 100, � = 0.1, 1, 10, 100, 1000 and exponential, squared exponential and
spherical families. The results (not shown) indicate that the estimated spatial structure
does not seem to change according to increasing values of these parameters for each of
the three families considered. Also, they hardly change between the di↵erent families.
In terms of MSE evaluation, there are very subtle di↵erences between the three cases
of generating the Gaussian random field V0(2) which are reasonable, since this a↵ects
only the small scale variability. The consideration of di↵erent temporal structures, for
example considering an AR(1) instead of an AR(2), does not change things.
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Finally, we show the importance of temporal smoothing in the first step in order to catch
the seasonality, and the e↵ect of smoothing on the dimensionality of the stochastic part.
Figure 4 compares the average over the 1000 matrices of the singular values obtained
after this second SVD. We can see there is a striking di↵erence in term of dimensional
reduction according to whether we smooth or not. Not smoothing the first three left
singular vectors leaves us unable to identify a low-rank model for its further stochastic
residual matrix, as opposed to the smoothed case where the choice of one EOF is clear.
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Figure 4: Singular values from the second SVD computed on the stochastic part. The
top graph shows that in the case we do not smooth the first three components the second
SVD identifies 47 EOFs; instead, the bottom graph shows that in the smoothing case
only one EOF is identified.

In order to give a complete idea of our methodology, we have considered and analyzed
one more scenario. This has two main components, a spatial part for the mean zero
process w(t, s) of the noise part decomposition and an error matrix. In particular, we
set the singular values for those two components equal to 5000 and all the rest to 0. We
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considere just 10 sites instead of 50, but retain 10957 observations. We run simulations
varying both the covariance functions for generating the GRF, V(2), (Gaussian, Squared
Exponential and Spherical) and the matrix of final error, ✏(t, s) (as a matrix of AR(2)
for columns and as white noise).
The results show that we can recover the singular values. In particular, in the case of
missing values (Za) the first value is overestimated and the second is underestimated,
the third has a value around 600 instead of zero and all the rest go to zero. This happens
for both the AR(2) or white noise error matrix with slight di↵erences in numeric values.
Furthermore, if we repeat such estimation for the three covariance families, we note that
in case of white noise error they are the same for all the three families, while in case
of an AR(2) error matrix, the estimation in the case of Spherical covariance structure,
show some di↵erences from the other two families. In both white noise and AR(2)
matrix error, the residual sum of squares from the three families have similar values and
the spatial components estimated after the second SVD, V(2), in the three families are
di↵erent only in the fourth decimal place.
In conclusion, concerning the estimation of the singular values, the two components
estimation shows similar results to the simulation done with three clear components,
namely bigger values for the first component and smaller for the second, and also in-
creasing values for the singular value set to zero. Further there is no strong e↵ect of
the three covariance families either for the estimating the singular values or the spatial
pattern.

4. Sicilian temperatures

We developed this model in order to analyze the spatiotemporal dataset of daily tem-
perature averages observed at fifty monitoring sites in Sicily. The analysis of these data
led us to consider three temporal basis functions (N = 3). We smooth these three
SVD components using a natural spline with smoothing parameter chosen by General-
ized Cross Validation and number of knots equal to 211 according the default setting
of smooth.spline function in R. Figure 5 shows a dominant first function representing
the dominant year to year seasonal pattern of temperature with highest values during
the summer months; it represents most of the variability present in the data. The ini-
tial (unsmoothed) temporal singular vector explains 93.6% of the variation in the data
while the smoothed temporal basis functions explains 82.6% of the total variation. The
second and third functions explain very little of the remaining variability, around 0.6%
each. Some of this residual variability appears to have structure and long term trend,
particularly the third, as we can see from the peaks around the early years and 1983
for the second component and the last years for the third one. The latter is the type of
signal we would expect to see from warming of the climate in this region.
We use the smoothed components to estimate the � matrix of trend coe�cients by a
linear regression fitted at each monitoring site. Figure 6 illustrates the fit using these
three components on a sample of three monitoring sites. The fit appears good with



14 Spatio-temporal model based on SVD for large datasets

Figure 5: Temporal basis functions (black) with their smoothed versions (grey).
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Figure 6: The smoothed trend in grey color calculated for three of the fifty sites (dots
representing raw data).
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no systematic errors. The four �i represent the spatially varying trend. Plotting their
values on a map (Figure 7) we see some spatial structure present, in particular systematic
di↵erences between sites around the coast and sites inland. The long term trend, �0

highlights a temperature average over 30 years higher around the coast. The other
�i show an opposite sign of variability between inland and coast sites with extremely
positive and negative values characterizing amplitude of the temporal basis function at
these sites. An extreme positive value for �2 occurs for the site located in a small island
for which the first years of data are missing, and an extreme negative value corresponds
to a site located inland, for which the data in the years 1983 � 84 were taken between
two periods of missing data. Generally �2 has more negative values for sites inland,
characterized by a semiarid climate. �3 exhibits almost constant spatial pattern across
the region, with very few extremely positive or negative values for inland and coast sites,
respectively.
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Figure 7: Trend coe�cients using a grey scale. Note that the grey scale changes from
plot to plot.
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Figure 8: The final residual spatial correlation as a function of geographic distance.
Highest correation value is equal to 0.36 and it occurs at a very short distance.

The spatiotemporal residual matrix E is calculated from the fitted linear models. The
SVD decomposition applied to this matrix led us to consider only one component (K=1)
because of the relatively high value of the first singular value compared to the rest. The
first component explains 59.7% of variability in the residual matrix. The temporal pro-
cess, u(2), shows some indication of long memory, but partial autocorrelation coe�cients
for lags larger then 3 are not significantly di↵erent from zero. The spatial processes,
v(2), takes values in the range (�0.203,�0.078) showing little spatial structure.

After removing spatial and temporal structures, an AR(2) process (L = 2) seems to
explain the remaining pattern for most of the locations, the autoregressive coe�cient �1

takes values in (0.398, 0.777) and �2 takes values in (�0.065, 0.198).

Because the di↵erent altitude of the sites could suggest the need for a nonstationary
correlation model we looked at the correlation between the sites against the distance
before and after applying the model. The only sites with moderate correlation (cor ⇠
0.36) from the final residuals matrix, ⌘(t, s), are in the middle North of the island and
around the coast; these are not the sites with the highest altitude. All the other sites
have correlation close to zero (see Figure 8) so it does not seem likely that altitude is
leading to nonstationarity. The MSE between data and fitted values equals 103.53 for
this dataset.

5. Conclusion and Discussions

The attractiveness of this model is its simple form describing both spatial and temporal
patterns. In contrast with more complex temporally dynamic models, our model adopts
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the simple perspective of a spatiotemporal process as a sum of products of temporal and
spatial processes. It is also able to accommodate large incomplete spatiotemporal data
matrices showing good capability to contend with time as well as space. The simulation
study gives evidence of good potential to reproduce the signal of interest when the
components are well defined, and that missing data do not cause serious bias. Our
interpretation of the simulation results is that our methodology is a robust technique,
being able to recover the truth even in cases where the assumptions are not quite right.
The application of our methodology to a dataset of daily temperatures from Sicily over
30 years shows a good fit, and is a compact description of the spatio-temporal variability
using just a few smoothed singular vectors and empirical orthogonal functions reducing
the spatial correlation.
Another useful property of this model is its quite fast evaluation. The computation
of the model fitted to the Sicily data (10957 daily temperatures across 50 monitoring
sites), that consists of three smoothed left singular vectors, one EOF, and autoregressive
models of order 2 estimated from the residuals, takes only 14.937 sec on 2.4 GHz Intel
Core 2 Duo.
This model is a low dimensional representation of spatio-temporal variability and de-
scribes the underlying patterns with just an AR(2) residual temporal process, that seems
appropriate for short time scale variation in meteorological data.
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