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Abstract

Linear mixed effects models have been widely used in the spatial analysis of envi-
ronmental processes. However, parameter estimation and spatial predictions involve the
inversion and determinant of the n× n dimensional spatial covariance matrix of the data
process, with n being the number of observations. Nowadays environmental variables are
typically obtained through remote sensing and contain observations of the order of tens
or hundreds of thousands on a single day, which quickly leads to bottlenecks in terms of
computation speed and requirements in working memory. Therefore techniques for re-
ducing the dimension of the problem are required. The present work analyzes approaches
to approximate the spatial covariance function in a real dataset of remotely sensed car-
bon dioxide concentrations, obtained from the Atmospheric Infrared Sounder of NASA’s
”Aqua” satellite on the 1st of May 2009. In a cross-validation case study it is shown how
fixed rank kriging, stationary covariance tapering and the full-scale approximation are
able to notably speed up calculations. However, the loss in predictive performance caused
by the approximation strongly differs. The best results were obtained for the full-scale
approximation, which was able to overcome the individual weaknesses of the fixed rank
kriging and the covariance tapering.

Keywords: spatial covariance function, fixed rank kriging, covariance tapering, full-scale ap-
proximation, large spatial data sets, mid-tropospheric CO2, remote sensing, efficient approx-
imation.
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1. Introduction

The monitoring of environmental processes has been revolutionized in the recent past through
the upcoming of remotely sensed satellite measurements. The resulting spatial resolution is far
superior compared to the traditional monitoring through networks of measurement stations.
This of course constitutes a major improvement for scientific research, but also introduces
the need for statistical models that can handle such large data sets, which often involve ob-
servations on the order of tens or hundreds of thousand per day. One such environmental
data set of particular interest for the ongoing political discussion and the related negotiations
on climate change and global warming is the remotely sensed measurement of carbon diox-
ide concentration in the mid-troposphere as measured by the Atmospheric Infrared Sounder
(AIRS) of NASA’s ”Aqua” satellite. It has been contemplated that space-based observations
of CO2 could complement the weakly enforceable system of national reporting of sources of
CO2 emissions in a meaningful way (Mintzer, Leonard, and Valencia (2010, p. 28)). In fact,
recent studies have reported a ’gap’ in CO2 reporting from China of 1.4 gigatonnes per year
(Guan, Liu, Geng, Lindner, and Hubacek (2012)), which would amount to 5% of the global
total. This gives rise for an objective assessment of CO2 emissions based on measurements
and a corresponding validation of national reporting standards. In that way statistical model-
ing of atmospheric CO2 concentrations can serve as an important input to climate projection
projects and for the estimation of CO2 surface fluxes. Linear mixed effects models have been
widely used in the spatial analysis of such environmental data sets. However, parameter esti-
mation and spatial predictions involve the inversion and determinant of the n×n dimensional
spatial covariance matrix of the data process, with n being the number of observations. As
mentioned above, environmental variables as measured through remote sensing contain ob-
servations of the order of tens or hundreds of thousand on a single day, which quickly leads
to bottlenecks in terms of computation speed and requirements in working memory.

Linear Mixed-Effects Models Consider a real-valued spatial process {Z(s) : s ∈ D ⊂ Rd}
defined on the domain of interest (e.g. the globe as in the CO2 example). The process is
observed at n locations and is a noisy version of the smooth process {Y (s) : s ∈ D ⊂ Rd},
which we are interested in making inference on. This defines the process Z(·) at location s as

Z(s) = Y (s) + ε(s) (1)

where {ε(s) : s ∈ D} is a spatial white-noise process with zero mean and var(ε(s)) = σ2ε v(s).
ε(·) covers the nugget effect, or alternatively the measurement error of the instrument. The
smooth process Y (·) contains two parts,

Y (s) = x(s)′α + ν(s) (2)

where the first one covers fixed-effects from a deterministic large-scale trend, modeled here
as a linear function of p spatial covariates x(·). The second term ν(·) models small-scale
spatial random variations through a zero-mean process with positive and finite variance and
(generally non-stationary) covariance function

cov(ν(u), ν(v)) ≡ C(u,v) u,v ∈ D . (3)

For the process Z(·) at the n observed locations Z = (Z(s1), · · · , Z(sn)) this becomes

Z = Xα + ν + ε (4)
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with X being the n× p matrix of covariate values at the observed data locations. Assuming
ε and ν to be independent the resulting n× n covariance matrix of Z is

Σ = var(ν) + var(ε) = C + σ2εVε (5)

where C is the covariance matrix of ν generated by the covariance function in (3) and Vε =
diag{vε(s1), · · · , vε(sn)}. The model described in (1)-(5) is also called a linear mixed-effects
model.
To obtain an optimal linear spatial prediction of the smooth process Y (·) at a specific location
s0, universal kriging can be applied, as described for example in Cressie and Wikle (2011).
Universal Kriging solves for the homogeneously linear combination of the data λ′Z, that
minimizes the mean squared prediction error

MSPE(λ) = E(Y (s0)− λ′Z)2.

In a purely gaussian setting this is also equivalent to deriving the posterior distribution
[Y (s0)|Z] and its first two moments E(Y (s0)|Z) and var(Y (s0)|Z). The resulting universal-
kriging predictor and kriging variance are given in (6) and (7) (Cressie and Wikle (2011, p.
148))

Ŷ (s0) = x(s0)′α̂gls + cY (s0)′Σ−1(Z−Xα̂gls) (6)

σ̂2(s0) = V ar(Y (s0)) (7)

= cY (s0)′Σ−1cY (s0)

+(x(s0)−XΣ−1cY (s0))′(X′Σ−1X)−1(x(s0)−XΣ−1cY (s0))),

where cY (s0) = cov(Y (s0),Z) describes the cross-covariance between Y (s0) and the observed
data Z, generated through the covariance function in (3), and α̂gls = (X′Σ−1X)−1X′Σ−1Z,
is the generalized-least squares estimator of α. Computational problems of speed and storage
may arise in the calculation of the inverse of the n× n covariance matrix Σ, which is needed
for kriging predictions and variances in (6) and (7) and requires O(n3) computations. This
becomes even more difficult in iterative Maximum-Likelihood parameter estimations, where
Σ−1 has to be calculated in each iteration step. Another potential shortage can be identified
for the case of a large number of prediction locations, for which the m × n cross-covariance
matrix might become very large and needs huge amounts of storage in the current workspace.
The following approaches have been recently developed to tackle the large-matrix-problem by
applying a low-rank approximation of the spatial process ν(·) (e.g. Cressie and Johannesson
(2006), Shi and Cressie (2007), Cressie and Johannesson (2008) and Katzfuss and Cressie
(2009)), by introducing sparseness to Σ (Furrer, Genton, and Nychka (2006)) and a combi-
nation of both approaches (Sang and Huang (2012)).
This paper focuses on efficient inference on linear mixed-effects models from a frequentists
perspective, however another class of methods in the recent literature is the Integrated
Nested Laplace Approximation (INLA) approach proposed by Rue, Martino, and Chopin
(2009) imbedded in a Bayesian framework. Here, an efficient approximation of the poste-
rior marginals of the elements of the latent field in a latent gaussian model is introduced,
that is clearly superior in terms of computation speed compared to traditional simulation
based MCMC schemes. In Eidsvik, Martino, and Rue (2009) this procedure was also suc-
cessfully applied in a spatial generalized linear mixed model. Lindgren, Rue, and Lindström
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(2011) show that, by using stochastic partial differential equations (SPDE), an explicit link
between Gaussian fields and Gaussian Markov random fields (GRMF) can be established, at
least when using the Matérn class of covariance functions. With the Markov property the
involved precision matrix becomes sparse and sparse matrix algorithms can be applied. In
Lasinio, Mastrantonio, and Pollice (2013) the SPDE approach is extended and includes an
INLA approximation to further enhance computational feasibility. The authors also carry
out a simulation study, in which they compare the SPDE/INLA approach with the covari-
ance tapering applied in this paper in terms of their respective predictive performance. It is
shown that the tapering approach can catch up with the SPDE/INLA approach. The INLA
approach can be even applied for predictive process models, as in Eidsvik, O. Finley, Baner-
jee, and Rue (2012), in the spirit of the Fixed Rank Kriging. First a reduced rank spatial
process is established, which aims at reducing the dimensionality of the model, and the INLA
approximation is used to conduct Bayesian inference. In the recent literature the research
is now focused on translating the outlined approximation approaches into a spatio-temporal
context. In Stroud, Stein, Lesht, Schwab, and Beletsky (2010) a dynamic state-space model
is proposed using an Ensemble Kalman Filter. The authors apply the covariance tapering
in order to speed up computations and to reduce storage requirements for the full ensemble
covariance and Kalman Gain matrices, as well for the approximation of the gaussian error
random field.

2. Approximating the Spatial Covariance Function

2.1. Fixed Rank Kriging

As a way of dealing with the inversion of the n× n covariance matrix in a large data setting,
Cressie and Johannesson (2006, 2008) proposed to approximate the spatial process ν(·) in
(2) by a vector η of r random effects with r << n and a corresponding set of spatial basis
functions S(·). The model for ν(·), which the authors call spatial random-effects model, is

ν(s) = S(s)′η + ξ(s), , s ∈ D (8)

and the corresponding smooth process Y (·) becomes

Y (s) = x(s)′α + S(s)′η + ξ(s) , s ∈ D (9)

which results in a spatial mixed effects model, where S(s) ≡ (S1(s), · · · , Sr(s))′ is the set of
r basis functions evaluated at location s ∈ D, and η is a r-dimensional zero-mean vector
of random effects with r × r dimensional covariance matrix var(η) = K. The zero-mean
micro-scale variation process ξ(·) with variance σ2ξvξ(·) accounts for the spatial variation not
explained by the dimension reduced model. Assuming that the micro-scale variation ξ(·) is
white-noise in space and that η and ξ(s) are independent the covariance function of ν(·) is
consequently

C(u,v) = S(u)′KS(v), u,v ∈ D. (10)

It is important to note, that no assumptions about stationarity or isotropy are made in the
spatial random-effects model. The resulting theoretical covariance matrix Σ of the data
process is

Σ = SKS′ + σ2εVε + σ2ξVξ, (11)
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with S being the n × r dimensional matrix of basis functions evaluated at each observed
location s1, · · · , sn and Vξ ≡ diag{vξ(s1), · · · , vξ(sn)} covering the heterogeneity of the small-
scale spatial variation. This representation of the covariance matrix allows for the application
of the Sherman-Morrison-Woodsbury formula as in (12) (Henderson and Searle (1981, p. 53))

(A + UBV)−1 = A−1 −A−1U(I + BVA−1U)−1BVA−1 (12)

and consequently the inverse of (11) can be written as

Σ−1 = (σ2εVε + σ2ξVξ)
−1 (13)

−(σ2εVε + σ2ξVξ)
−1S

{
K−1 + S′(σ2εVε + σ2ξVξ)

−1S
}−1

S′(σ2εVε + σ2ξVξ)
−1.

Obviously using this representation only the inverse of the fixed-rank r × r matrix K and
the diagonal n × n matrix (σ2εVε + σ2ξVξ) describing the nugget effect are needed. In that
way great savings in terms of storage and reductions of computing time can be achieved. As
stated in Cressie and Johannesson (2008, p. 214) the computational cost reduces from O(n3)
to O(nr2) and accordingly rises only linear with the size of the dataset. With the setting of
(8)-(13) the corresponding kriging prediction and variance for the prediction location s0 ∈ D
are

Ŷ(s0) = x(s0)
′α̂gls + cY (s0)

′Σ−1(Z−Xα̂gls) (14)

and

σ̂2(s0) = S(s0)′KS(s0)− cY (s0)′Σ−1cY (s0) (15)

+(x(s0)−X′Σ−1cY (s0))′(X′Σ−1X)−1(x(s0)−X′Σ−1cY (s0))

with
cY (s0) = SKS(s0) + σ2ξvξ(s0)I(s0 ∈ {s1, · · · , sn}), (16)

and S(s0) is the r dimensional vector of basis functions evaluated at the prediction location
s0.

Basis Function Selection

Important for the spatial random-effects model in (8) is the specification of the basis functions.
The application of basis functions to approximate non-stationary covariance functions has
already been discussed in literature, e.g. in Nychka, Wikle, and Royle (2002). Popular
classes of functions are smoothing spline basis functions (e.g. in Wahba (1990)), wavelet basis
functions (e.g. in Vidakovic (1999)) and radial basis functions (e.g. in Hastie, Tibshirani,
and Friedman (2003)). An overview of available classes is also given in Wikle (2010). Since
the predictions in Section 3 are required for a sphere, namely the globe, the class of multi-
resolutional local bisquare functions is used (as suggested in Cressie and Johannesson (2008))

Si,l(s) =

{[
1− (‖ s−mi,l ‖ /rl)2

]2
if ‖ s−mi,l ‖≤ rl

0 otherwise
, (17)

where mi,l is the center point of the ith basis function in resolution level l and rl is defined
through Cressie and Johannesson (2006) as

rl = (1.5)× (shortest distance between the center points in resolution level l).



6 Efficient Approximation of the Spatial Covariance Function for Large Datasets

 90° S 

 75° S 

 60° S 

 45° S 

 30° S 

 15° S 

  0°   

 15° N 

 30° N 

 45° N 

 60° N 

 75° N 

 90° N 

Figure 1: Basis function center points for 4 different resolutions of a Discrete Global Grid

By specifying multiple resolutions the covariance model is able to cover different scales of
spatial variation. Along with the type of basis function the locations of the center points
have to be specified. Ideally they should cover the entire domain and be equidistant. This
can be achieved through the application of a multi-resolutional Discrete Global Grid (DGG)
of hexagons (see Sahr, White, and Kimerling (2003)). In Figure 1 a DGG (ISEA3H1 ) was
generated for the globe with 4 different resolutions, which is later used for the analysis of
atmospheric carbon dioxide concentrations. Center points below 60 degrees South have been
deleted, since no measurements of the satellite can be obtained from that area. The corre-
sponding inter-cell distances, measured in great-arc distances, are 4430.85 km for resolution
1 (red dots) and 2558.15 km, 1476.95 km and 852.71 km for resolution 2 (blue dots), 3 (green
dots) and 4 (black dots) respectively. Depending on how much resolutions are considered,
there are 29, 116, 370 or 1127 basis functions to evaluate for each of the n observations,
resulting in an increasing dimension of K. Hence, there is a trade-off between the explained
spatial variation and the computational advantages obtained through the basis function ap-
proximation.

Parameter Estimation

The Fixed Rank Kriging approach requires estimates for the parameters σ2ε , σ
2
ξ ,K and α.

As already mentioned, a suitable estimator for α is the generalized-least squares estimator
α̂gls = (X′Σ−1X)−1X′Σ−1Z. Since σ2ε and σ2ξ are not individually identifiable, σ2ε is assumed
to be known and can be estimated through the semi-variogram at spatial lags close to zero
using robust variogram estimates (see Cressie and Hawkins (1980)). The intercept of a fitted
line using Weighted Least Squares (see Cressie (1985)) represents the estimate for σ2ε . The
parameters K and σ2ξ of the spatial random-effects model can be estimated either through a

1Characteristics of different DGGs can be found on URL:http://webpages.sou.edu/ sahrk/dgg/isea/ta-
bles/tables.html
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Binned Method-of-Moments (BMoM) estimation procedure (as described in Cressie and Jo-
hannesson (2008)) or by Maximum Likelihood Estimation using an Expectation-Maximization
(EM) algorithm (see Katzfuss and Cressie (2009)). In the BMoM approach the parameters
K and σ2ξ are estimated through minimizing a weighted Frobenius Norm between the the-
oretical covariance matrix Σ and an empirical counterpart obtained by binning the data.
However, as the authors in Katzfuss and Cressie (2009) state, BMoM estimation is inferior
in providing accurate estimates of prediction uncertainty, is much more complicate to apply
and requires many subjective decisions. Therefore our focus is on the EM algorithm and the
BMoM procedure will not be described in detail. The interested reader is referred to Cressie
and Johannesson (2008).

Maximum Likelihood Estimation via EM-Algorithm

First, some distributional assumptions for the data have to be made in order to apply Maxi-
mum Likelihood estimation. For simplicity Z represents the vector of detrended data in this
case and it is assumed that Z follows a multivariate normal distribution

Z ∼ Nn(0,SKS′ + σ2εVε + σ2ξVξ).

Together with σ2ε , Vε and Vξ assumed known, the Log-Likelihood becomes

`(K, σ2ξ ; Z) ≡ log f(Z; K, σ2ξ ) = −1

2
log det Σ− 1

2
tr(Σ−1ZZ′). (18)

However, as Katzfuss and Cressie (2009, p. 3381) state, finding estimates for K and σ2ξ
that maximize the likelihood equations is complicated. For that reason an EM algorithm
(Dempster, Laird, and Rubin (1977)) is suggested. Instead of maximizing the likelihood of
the observed data, it is assumed that knowing the distribution of some unobserved random
variables, in this case η ∼ Nr(0,K) and ξ ∼ Nn(0, σ2ξVξ) independently distributed, would
result in the joint distribution function of both, the observed and the missing data, which in
turn can be maximized much easier. The algorithm consists of two steps. The first one is the
Expectation step, in which the conditional expectation of the complete-data likelihood at a
certain value of the parameter vector θ[t] at the t-th iteration, given the observed data, has
to be calculated

Q(θ,θ[t]) = Eθ[t]{log f(η, ξ;θ)|Z}. (19)

In the Maximization step the parameters are updated, so that (19) is maximized, which results
in the updating scheme

K[t+1] = K[t] + K[t]
(
S′Σ[t]−1

[
ZZ′Σ[t]−1 − In

]
S
)

K[t] (20)

σ2
[t+1]

ξ = σ2
[t]

ξ + σ2
[t]

ξ tr

(
1

n
Σ[t]−1

[
ZZ′Σ[t]−1 − In

]
Vξ

)
σ2

[t]

ξ . (21)

For a thorough derivation of the Expectation and Maximization steps the reader is referred
to Katzfuss and Cressie (2009). Both steps are repeated until a convergence criterion based
either on the change in the maximized likelihood or on the change in the parameter values
is fulfilled. The estimates found are solutions to the likelihood equations. However, the user
has to make subjective decisions concerning the convergence criterion and the starting values
for the iteration procedure, which might influence both the efficiency and the accuracy of
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the algorithm. Furthermore the algorithm might lead to a local maximum depending on the
choice of the initial values.
The outlined fixed rank kriging approach is very suitable for dealing with datasets of mas-
sive size. Due to the low dimensional spatial random effects vector η inverting the data
covariance matrix Σ requires operations that rise only linear with the size of the dataset. In
addition if the number of random effects r is sufficiently small no assumptions on the form of
var(η) = K are necessary and the restricting assumptions of stationarity and/or isotropy can
be avoided. Fixed rank kriging is able to cover spatial variations on larger scales with a small
number of basis functions. However in order to capture many scales of spatial variation of
the phenomenon finer resolutions of basis functions, and consequently a larger r are needed.
This reduces the computational efficiency and introduces the need of parametric covariance
functions for K and simplifying assumptions. Obviously the choice of the basis functions is
critical for the fixed rank kriging approach. Through choosing the number, the location and
the type of the basis functions, the user is left with many subjective decisions, which possibly
affect the outcome.

2.2. Covariance Tapering

Another way of efficiently dealing with Σ−1 is to introduce sparseness. With Σ and cY (s0)
being sparse, significant computational savings in calculating the kriging predictions and
variances in (6) and (7) can be achieved. The operation u = Σ−1(Z − Xα̂gls) in (6) or
u = Σ−1cY (s0) in (7) can be solved efficiently through sparse matrix techniques based on
the Cholesky factorization Σ = AA′. Then solving the triangular systems Aw = Z−Xα̂gls

or Aw = cY (s0) respectively and A′u = w yields the desired quantity. The computational
complexity of the preceding operations is of order O(nk2), where k denotes the average num-
ber of non-zero elements in each row of Σ, and consequently rises only linear with the size of
the dataset.
Based on Furrer et al. (2006) sparseness can be introduced by setting covariances to zero for
observations more than a specific distance apart. The intuition behind this, is that obser-
vations far from the prediction location are not expected to have a large influence on the
prediction and can therefore be neglected. Another argument for restricting to a local neigh-
borhood is that even if the process inhibits long-range spatial dependence, the conditional
correlation is expected to be very small after observing a closely located neighbor, since most
of the information was already covered in the correlation with the neighboring observation.
Let Cθ(h) be a second order stationary and isotropic covariance function, with h = ||si − sj ||
and parameter vector θ. Using a taper function T (h, γ), which is an isotropic and second
order stationary covariance function with compact support, being equal to zero for h ≥ γ, the
tapered covariance function is the Schur product of Cθ(·) and T (·)

Ctap(h, γ) = Cθ(h) ◦ T (h, γ). (22)

The tapered covariance function will also be a valid covariance function, since the Schur
product of two positive definite matrices is again positive definite according to Horn and
Johnson (1994, Theorem 5.2.1). An overview and some suggestions on choosing the type of
taper function can be found in Furrer et al. (2006), including the spherical covariance function
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and functions from the Wendland family

Tspherical(h, γ) =

(
1− h

γ

)2

+

(
1 +

h

2γ

)
, h > 0, (23)

Twendland,1(h, γ) =

(
1− h

γ

)4

+

(
1 + 4

h

γ

)
, h > 0, (24)

Twendland,2(h, γ) =

(
1− h

γ

)6

+

(
1 + 6

h

γ
+

35h2

2γ2

)
, h > 0. (25)

Furrer et al. (2006) also investigated the asymptotic behavior of the kriging estimators with
the tapered covariance function and proved that under certain conditions the estimator is
asymptotically equivalent to the one obtained by using the original covariance function.

Parameter Estimation

The concept of tapering the covariance function not only improves the computational efficiency
in kriging applications, in fact it can also be used in maximum likelihood estimation proce-
dures, as it is demonstrated in Kaufman, Schervish, and Nychka (2008). In assuming multi-
variate normality a simple approximation of the log-likelihood function is obtained through
replacing the model covariance matrix Σ(θ) by its tapered counterpart Σtap = Σ(θ) ◦T(γ),
where T(γ)i,j = T (||si − sj ||, γ). However this may lead to biased estimates in practice for
small values of γ, as Kaufman et al. (2008, p. 1546) points out. For that reason the authors
suggest to apply a two-taper approximation, where both the model and the sample covariance
matrix are tapered. In this case Z represents the vector of detrended data and the one- and
two-taper likelihood functions become

`1,taper(θ) = −1

2
log det(Σtap)−

1

2
Z′Σ−1tapZ (26)

`2,taper(θ) = −1

2
log det(Σtap)−

1

2
Z′
(
Σ−1tap ◦T(γ)

)
Z. (27)

Maximizing `2,taper(θ) leads to unbiased estimators, but at the cost of an increased computa-
tional complexity, as the two-taper approximation involves calculating the full inverse Σ−1tap,
whereas the simple approach (one-taper approximation) only requires solving the sparse sys-
tem of equations Σ−1tapZ. For the functional form of CY (h,θ) used to generate Σ(θ) there are
many choices in the literature (see e.g. Cressie and Wikle (2011) for an overview) including
the popular class of Matérn covariance functions (Matérn (1986)) defined as

CY (h, σ2, ρ, ν) =
σ2(h/ρ)ν

Γ(ν)2ν−1
Kν(h/ρ), h ≥ 0, σ2, ρ, ν > 0, (28)

with Kν being the modified Bessel function of order ν (see Abramowitz and Stegun (1964)),
σ2 is the sill of the semi-variogram, ρ is a range parameter and ν controls for the smoothness
of the process.
Despite Maximum Likelihood Estimation there is also the possibility for Variogram-model
fitting using the empirical semi-variogram. Assuming stationarity and isotropy of the semi-
variogram and the covariance function of the process Y , their relationship can be established
through

γY (||h||,θ) = CY (0,θ)− CY (||h||,θ). (29)
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An empirical estimate of γY (·) (see Cressie and Wikle (2011, p. 131)) can be computed
through

γ̂Y (h) =
1

2

(
γ̂Z(h)− σ2ε

)
(30)

=
1

2

(
ave{(Z(si)− Z(sj))

2 : ||si − sj || ∈ T (h); i, j = 1, · · · , n} − σ2ε
)
,

where T (h) is a small tolerance region around h, resulting in a binning of the data. Using
Least-Squares variogram fitting approaches a theoretical covariance function (e.g. (28)) can
be fitted to the empirical semi-variogram by minimizing a weighted or non-weighted loss
function (Cressie (1993)), given as

loss(θ)OLS =
∑
k

(γ̂k − γk(θ))2 (31)

loss(θ)WLS =
∑
k

nk

(
γ̂k − γk(θ)

γk(θ)

)2

, (32)

where γ̂k denotes the value of the empirical semi-variogram for the kth bin, γk(θ) is the value
of the theoretical semi-variogram in the kth bin and nk is the number of pairs in the kth bin.
Through tapering the covariance function many zeroes are introduced to Σ and the required
operations rise only linear with the size of the dataset through the application of sparse matrix
techniques. Disregarding covariances for locations with large distances only leads to a slight
loss in predictive performance, since much of the information in the distant location is already
covered in the correlation with closely located observations. In that way covariance tapering
is able to efficiently capture spatial dependence at small spatial scales. However, depending
on the choice of the taper range γ dependences at large scales are ignored and this might
lead to a decline in predictive performance in regions with few data points. Another problem
arises when using stationary covariance tapers on a non-stationary process. In this case small
taper ranges are recommended in order to keep the bias small.

2.3. Full-Scale Approximation

Both approaches, the Fixed Rank Kriging and the Covariance Tapering, can be combined
in a way, so that their advantages are fully exploited, as in Sang and Huang (2012). The
former is able to efficiently capture the large-scale spatial dependence, since for that purpose
only a small number of basis functions is needed (i.e. a small choice of r), however in order
to describe local behaviour the dimension of S and K has to be increased accordingly. In
contrast the Covariance Tapering is efficient for the spatial dependence at small spatial scales
(i.e. a small choice of γ), whereas larger scales require larger taper ranges. In combining both
approaches even small choices of r and γ are sufficient for providing a good approximation of
the spatial dependence at the full scale. Consider the spatial random effects model in (8)

ν(s) = S(s)′η + ξ(s), , s ∈ D,

where the residual process ξ(·) from the Fixed Rank Kriging is no longer assumed to be
independent in space, but instead has the following covariance function approximated through
Covariance Tapering

Cξ(u,v) =
{
CY (u,v)− S(u)′KS(v)

}
◦ T (u,v, γ), u,v ∈ D. (33)
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Consequently the covariance matrix Σ becomes

Σ = SKS′ + Cξ + σ2εVε, (34)

where Cξ denotes the sparse covariance matrix of the residual process ξ(·) generated through
(33). The approximate log-likelihood function, ignoring the constant term and assuming
normality on Z representing the vector of the detrended data, is

`(θ) = −1

2
log det

{
SKS′ + Cξ + σ2εVε

}
− 1

2
Z′
{
SKS′ + Cξ + σ2εVε

}−1
Z. (35)

In evaluating the log-likelihood function, the inverse and the determinant of the n × n co-
variance matrix Σ are needed. The form of (34) allows for efficiently inverting Σ using the
Sherman-Morrison-Woodsbury formula.

Σ−1 = (Cξ+σ
2
εVε)

−1−(Cξ+σ
2
εVε)

−1S
{
K−1 + S′(Cξ + σ2εVε)

−1S
}−1

S′(Cξ+σ
2
εVε)

−1 (36)

The determinant of (34) can be computed through

det(Σ) = det(K−1 + S′(Cξ + σ2εVε)
−1S) det(K−1)−1 det(Cξ + σ2εVε) (37)

In computing (36) and (37) only inverses and determinants of sparse n× n and of r × r ma-
trices are needed, which have a computational complexity of O(nr2 +nk2). Alternatively the
model can be fitted in a two-step procedure, so that the fixed rank kriging is estimated first
through the efficient EM-Algorithm outlined in Section 2.2 and covariance tapering is applied
to the residual process afterwards by applying variogram-model fitting as in Section 2.3. This
has the advantage of avoiding the computational demanding maximization of the full likeli-
hood. With this setting the full-scale approximation is able to combine the capabilities of the
fixed rank kriging and the covariance tapering and to overcome their individual weaknesses.
Whereas the r dimensional spatial random effect η captures large scale spatial dependence,
the residual process ξ(·) with tapered covariance function Cξ efficiently describes local behav-
ior. Importantly non-stationary and anisotropic behavior can be captured by the fixed rank
part. However, an open problem remains the choice of the approximation parameters γ and
r that lead to the most efficient outcome.

3. Efficiency Evaluation - Analysis of Atmospheric CO2 Concentrations

3.1. Data Description

The spatial dataset used for the comparative study consists of 12842 measurements of mid-
tropospheric CO2 concentrations obtained from the Atmospheric InfraRed Sounder (AIRS)
on board NASA’s Aqua satellite. The unit of measurement is ppm corresponding to 10−6

and denotes the number of CO2 molecules in one million parts of air. This Level-2 product
(AIRX2STC)2 contains observations at 90 × 90 km nominal horizontal resolution at nadir,
measured between -180◦ and 180◦ longitude and -60◦ and 90◦ latitude. However, in order to
avoid change-of-support issues, it is assumed that measurements are at point support. The

2Level 2 and 3 products are freely downloadable at http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings

http://disc.sci.gsfc.nasa.gov/AIRS/data-holdings
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Figure 2: Mid-tropospheric CO2 concentrations on the 1st of May 2009

Aqua satellite reaches global coverage twice a day. Since this study considers spatial-only
processes, the data are treated as if they were taken at one specific time point, neglecting the
time discrepancy between measurements. The dataset consists of observations taken on the
1st of May in 2009 and it already reveals some characteristic patterns of the natural carbon
dioxide process. Particularly the data inhibits higher CO2 concentrations and volatility in
the northern hemisphere corresponding to a seasonal pattern caused by the growth stage of
plants occurring in springtime.

3.2. Preliminary Steps

In order to evaluate the efficiency of the different approaches in approximating the spatial
covariance function, it has to be ensured that the respective model assumptions are fulfilled.
In Figures 3a, 3b and 3c the data is plotted against the degrees in longitude and/or latitude
direction. Obviously the CO2 process evolves differently in space depending on the orien-
tation. Whereas a trend pattern can hardly be identified in the East-West direction, CO2

concentrations tend to rise with decreasing distance to the north pole. Figure 3b also indicates
that this latitude trend is of a non-linear kind. For that reason a non-linear regression was
performed using polynomials up to order 3 for the latitude direction as covariates and a linear
trend is assumed for the longitude direction. The subsequent analysis will be based on the
detrended data. In addition the process variance appears to be higher in the northern hemi-
sphere, as can be seen in Figure 3b. In Figures 3d and 3e empirical directional variograms
of the detrended data with orientation 0◦ (North), 45◦ (North-East), 90◦ (East) and 135◦

(South-East) for the northern and southern hemisphere are shown. The empirical directional
variograms were generated by using a tolerance angle of 22.5◦. Importantly, since the spatial
process evolves over the globe (for simplicity it is assumed that the earth is a perfect sphere
with radius R = 6371km) great-circle distances have to be used. As can be seen in Figure
3e the empirical directional variograms for the data in the southern hemisphere are quite
similar, indicating that deviations from isotropy can be regarded as small. However due to
the seasonal effect in the northern hemisphere caused by the growth of plants in springtime



Journal of Environmental Statistics 13

−60 −40 −20 0 20 40 60 80
−100

0

100

370

380

390

400

410

 

Latitude

Longitude

 

C
O

2 
C

on
ce

nt
ra

tio
ns

 in
 p

pm

370

375

380

385

390

395

400

405

410

(a) 3D Scatter-Plot of the Data vs. Longitude and Latitude
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(b) Scatter-Plot of the Data vs. Latitude
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(c) Scatter-Plot of the Data vs. Longitude
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(d) Empirical Directional Variograms (North)
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(e) Empirical Directional Variograms (South)
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(f) Estimated Nugget Variance vs. Latitude

Figure 3: Exploratory Data Analysis
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(a) Directional variogram of the subset of the data
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Figure 4: Spatial dependence structure in the subset of the data

the volatility is much higher. This can also be seen in the variograms in Figure 3d, where the
sill is much higher in the East-West direction. In effect, the variogram becomes increasingly
anisotropic with increasing degrees in latitude direction, leading to a non-stationary behavior
of the process. Another indicator for non-stationarity is apparent in Figure 3f showing the
estimated variance of the measurement error process depending on the degrees in latitude
direction. Estimates for the nugget variance were computed for several subregions along the
latitude direction using the approach mentioned in Section 2.2. Obviously measurements of
the satellite become increasingly noisy the closer they are located to the poles. To account
for this heterogeneity of the nugget variance a nonlinear regression was performed using poly-
nomials up to order 4. This was used to provide values for Vε in (5). As has been shown, the
spatial process is characterized by a non-stationary dependence structure and a variogram
that varies with the orientation, depending on the degrees in latitude direction. Consequently
the stationary covariance tapering can be regarded as inappropriate and adjustments to non-
stationary and anisotropic covariance functions are needed for spatial predictions on a global
scale. In contrast, the fixed rank kriging approximation is able to work without these as-
sumptions and is therefore suitable for this problem. Likewise the full-scale approximation
can handle non-stationary and anisotropic processes through its fixed rank part. However,
to ensure comparability of the outlined approaches, a subset of the data consisting of 5073
measurements between −20◦ and 20◦ latitude is considered first. For this region around the
equator deviations from stationarity and isotropy can be neglected, as can be seen in Fig-
ure 4. The empirical directional variograms of the subset of the data (Figure 4a) indicate
a comparable spatial dependence structure for all directions and as Figure 4b suggests, this
property holds irrespectively of the location. The empirical omni-directional variograms were
calculated at four equally spaced reference regions within the subset of the data. In addition,
the variance of the measurement error of the instrument can be considered as constant in
the subset of the data as can be seen in Figure 3f. In that way the subset serves as a sta-
tionary scenario for evaluating the efficiency of the approximation approaches, which will be
compared to the case, when these assumptions are not fulfilled.

3.3. Comparative Study

The focus of the study is to compare the efficiency of the approaches outlined in Section 2 in
approximating the spatial covariance function by relating their predictive performance with
the corresponding demand in computational resources. Both quantities are directly affected
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by the choice of the number of basis functions r and/or the taper range γ. Increasing values
result in a higher approximation quality but at the same time in higher computing times and
storage requirements. Consequently it is of interest, which approach is able to solve this trade-
off best. For the choice of the basis functions either 1, 2 or 3 resolutions from the DGG in
Figure 1 are selected, resulting in 10, 42 or 132 basis functions for the subset and in 29, 166 or
370 basis functions for the complete dataset, respectively. The taper range γ is varied between
50km and 1500km. This results in 3 Fixed Rank Kriging models, 10 Covariance Tapering
models and in another 30 Full-scale approximations covering each parameter combination.
The predictive performance is evaluated by a series of cross-validation experiments. For each
model a 10-fold cross-validation is performed, where the dataset has been divided randomly
into 10 subsamples. In each round one subsample is retained as a validation set for testing
purposes and the remaining subsamples are used to fit the model. This procedure is repeated
10 times, so that each observation was part of the validation set once. The predictions
of the validation set can then be compared to the original data to construct out-of-sample
performance measures, whereas the MSPE will be used in this study

MSPE
(
Ŷ (s0)

)
=

1

m

m∑
i=1

(
Ŷ (si)− Y (si)

)2
, s0 = (s1, · · · , sm) . (38)

However, the MSPE has to be adjusted, since predictions are based on the smooth process
Y (·) but only the noisy process Z(·) is observed and consequently the squared residuals
would be affected by the measurement error variance. Recall that Z = Y + ε and that
var(ε) = σ2εVε was assumed known and fitted through a polynomial function of order 4, so
that the correct representation of the MSPE in the presence of measurement error can be
obtained by subtracting the location specific nugget variance from the squared residual (see
Cressie (1993, p. 128))

MSPE
(
Ŷ (s0)

)
=

1

m

m∑
i=1

{(
Ŷ (si)− Z(si)

)2
− σ2ε vε(si)

}
, s0 = (s1, · · · , sm) . (39)

Besides the predictive performance, it is also of interest how much computational resources
have been used by the models. In particular the computing time needed for calculating
the important quantities in kriging predictions and in likelihood maximizations, which are
the solution of the system of linear equations Σ−1Z and the determinant of Σ, is monitored.
Furthermore, the maximum amount of working memory used in these calculations is recorded,
disregarding all preliminary calculations. However, it has to be noted that depending on
how much prediction locations s0 are considered, the operation cY (s0)Σ−1 might also need
significant amounts of working memory, especially for smooth prediction surfaces.

3.4. Subset Results - Stationary scenario

For the subset of the data, which serves as a stationary scenario, the trade-off between pre-
dictive performance and demand in computational resources is visualized in Figure 5. In
Figure 5a the time in seconds needed to calculate the important quantities Σ−1Z and det Σ
is plotted against the MSPE and in Figure 5b the maximum amount of working memory in
GB is shown. In comparing the fixed rank kriging (black dots) with the covariance tapering
(blue line) it can be seen that the latter approach is more efficient in approximating the spa-
tial covariance function, since for every level of the MSPE less or equal time and memory is
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Figure 5: Efficiency Evaluation of the Covariance Approximization Approaches (Subset)

Full Full-scale Approximation Fixed Rank Kriging Covariance Tapering
Model r=132,γ=1500 r=42,γ=625 r=132 r=42 γ=750 γ=625

MSPE 0.975 1.034 1.734 1.795 2.684 1.734 1.963

Time Σ−1Z̃ 11.086 0.76104 0.06663 0.18632 0.01967 0.06561 0.04159
Time det Σ 12.726 0.32702 0.03035 0.07271 0.00656 0.04635 0.02916

Memory Σ−1Z̃ 2.464 0.72400 0.06453 0.17236 0.01745 0.07450 0.04708
Memory det Σ 2.365 0.23800 0.02121 0.05666 0.00574 0.02449 0.01548

Table 1: Efficiency Evaluation - Subset

needed. However it has to be noted, that this result strongly depends on the range of spatial
dependence relative to the total extent of the spatial domain and the spatial distribution of
the data locations. As denoted earlier, covariance tapering has advantages in describing local
and fixed rank kriging in large-scale dependencies. Accordingly having a process with a small
range of spatial dependence in relative terms will result in efficiency advantages for the covari-
ance tapering. In contrast a high proportion of clustered data decreases the sparsity of Σ and
increases the demand in computational resources for the covariance tapering. To overcome
the individual weaknesses and to exploit the advantages of the fixed rank kriging and the
covariance tapering their combination in a full-scale approximation leads to further efficiency
gains, as can be seen in Figures 5a and 5b. For lower approximation qualities the full-scale
approximation (black line) is slightly more efficient as the covariance tapering (blue line),
however in order to achieve lower values of the MSPE it is worth including higher resolutions
of basis functions in the full-scale approximation (red and green line) to further reduce the
computational complexity. The complete summary of results for the 43 different models is
shown in Table 3 in the Appendix, whereas a characteristic snapshot is shown in Table 1. To
evaluate the overall quality of the approximations, the results for the full model without any
approximation, i.e. the model with an untapered Matérn covariance function, as a baseline
are shown. The full model achieved a MSPE of 0.975 and the approximation that came clos-
est to that level is the full-scale approximation with 132 basis functions and a taper range of
1500km. As can be seen, almost the same predictive performance can be accomplished, but
about 20 times faster and with only around 30% of the maximum working memory required.
Table 1 also compares the efficiency of the approximations for a fixed level of the MSPE of
about 1.75. Clearly the full-scale approximation outperforms the other approaches in terms
of speed and storage, whereas the advantage over the covariance tapering is rather small for
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Figure 6: Prediction Surfaces of the Subset

this level of the MSPE, but becomes much larger for better approximation qualities. Finally
Figure 6 shows kriging surfaces of the full model (Figure 6b) and the full-scale approximated
model with r = 132 and γ = 1500km (Figure 6c), whereas 250000 prediction locations were
used to produce the latter and, due to memory restrictions, only 40000 pixels can be produced
for the full model. As the similarity of both plots indicate, the quality of the approximation
is very good and comes together with remarkably high computational savings.

3.5. Global Dataset Results - Non-stationary Scenario

As outlined in Section 3.2 the global dataset is characterized by a non-stationary and anisotropic
dependence structure, which affects the efficiency of the stationary covariance tapering. Com-
pared to the stationary case, the efficiency curves (blue lines) are shifted to the right in Figures
7a and 7b. The stationary covariance tapering is not able to provide high quality approxima-
tions of the non-stationary covariance function, because the increasing process variance in the
northern hemisphere is not captured. Consequently estimated prediction errors will not yield
reliable estimates of the prediction uncertainty. In contrast the Fixed Rank Kriging (black
dots) is able to account for the spatially varying dependence structure and yields lower values
of the MSPE. Nevertheless the stationary covariance tapering is still more efficient for low
approximation qualities. The directional semi-variograms in Figure 3d already revealed the
anisotropic and non-stationary character of the dependence structure by the increased process
variance in the northern hemisphere. However, at small spatial scales the spatial dependence
patterns are very similar, despite the differing nugget variances. Consequently a stationary
covariance tapering is still capable of providing good approximations of the covariance func-
tion in a local neighborhood although a non-stationary behavior is apparent at larger spatial
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Figure 7: Efficiency Evaluation of the Covariance Approximization Approaches

Full Full-scale Approximation Fixed Rank Kriging Covariance Tapering
Model r=29,γ=625 r=29,γ=750 r=370 r=29 γ=1500 γ=750

MSPE 2.556 2.480 2.288 2.352 3.946 2.658 3.055

Time Σ−1Z̃ 155.6 0.620 0.736 2.911 0.396 1.881 0.317
Time det Σ 186.0 0.399 0.453 1.499 0.264 1.259 0.194

Memory Σ−1Z̃ 14.18 0.696 0.911 2.347 0.115 2.254 0.584
Memory det Σ 13.79 0.210 0.272 1.058 0.046 0.815 0.230

Table 2: Efficiency Evaluation - Global Dataset

scales. In that way, a full-scale approximation is again able to further increase efficiency and
to supply high quality approximations of the spatial covariance function at all spatial scales,
as indicated by the efficiency curves (black, red and green lines) in Figure 7. A complete
summary of the results of all models can be found in Table 4 in the Appendix, whereas a
characteristic snapshot is shown in Table 2. As in the subset, the results of the full model with
an untapered stationary Matérn covariance function are provided for comparative purpose.
However, analogously to the stationary covariance tapering, it does not show a high predictive
performance and results in a MSPE of 2.556 accompanied by high computation times and a
huge amount of 14 GB of working memory. Using the Full-scale approximation with r = 29
and γ = 625 a comparable value can be obtained about 335 times faster and with only about
5% of the memory required at maximum. For comparing the efficiency of the approxima-
tion approaches a fixed level of about 2.3 of the MSPE is considered. Again the full-scale
approximation was superior in terms of efficiency compared to both single approaches and
the lead is even more pronounced in the non-stationary scenario than for the subset. Finally
the full-scale approximation can be used to compute a high quality prediction surface for the
process of atmospheric CO2 concentrations over the globe, as it is shown in Figure 8, where
a kriging surface containing 250000 prediction locations for the full-scale approximation with
r = 370 and γ = 1500km was produced.

3.6. Choice of the covariance function

The predictive performance of both the covariance tapering and the full-scale approximation
approach is directly affected by the choice of the underlying covariance model. Hence, the
robustness of the obtained results has to be checked. For that purpose the cross-validation
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Figure 8: Mid-tropospheric CO2 concentrations on the 1st of May 2009

study for the global dataset was also performed for two other popular choices of covariance
functions, namely the spherical and the exponential model, which can be found for example
in Cressie (1993, p. 61). In Figure 9 the trade-off between computation time and predictive
performance for all approximation approaches is shown, whereas the colors black (Matérn),
red (Exponential) and green (Spherical) represent the different underlying covariance models.
As can be seen, the efficiency of the approximation approaches is hardly changed by altering
the covariance model. The main results still hold true. In effect, the covariance tapering
is still more efficient at lower and fixed rank kriging at higher approximation qualities and
a combination of both approaches in a full-scale approximation is always superior in terms
of efficiency. However, some differences can be identified, with the spherical model yielding
better results than the exponential model and the Matérn showing the worst performance.
Obviously parameter parsimony in the covariance model is more important than flexibility in
the variogram fit for this dataset.

3.7. Choice of the taper function

Another factor influencing the efficiency of the approximation approaches is the choice of the
taper function. In Figure 10 the corresponding results of the comparative study are shown for
3 types of taper functions, which were already introduced in Section 2.2, namely the Spherical
and the Wendland taper functions of order 1 and 2. For this analysis an exponential model
was used for calculating the covariances. As can be seen, changing the taper function only
leads to small changes in the overall efficiency of the approximation approaches. Again the
main results are still valid and there is a tendency for parsimony to be more important than
flexibility of fitting the covariance function. Using the spherical taper function was always
superior in terms of efficiency than the Wendland type functions, whereas the higher order
Wendland function performed worst.
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Figure 9: Efficiency evaluation for different choices of the covariance function
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3.8. Choice of the approximation parameters

The trade-off between predictive performance and computational complexity can be directly
controlled through the choice of the approximation parameters r and γ in the full-scale ap-
proximation. In Figures 5a and 7a this trade-off was illustrated for a fixed number of basis
functions r through the black, red and green lines. However these Figures can also give an
idea on how the overall efficiency curve of the full-scale approximation would look like, as
the enveloping black doted lines sketch. These curves depict the optimal combinations of
r and γ yielding the lowest achievable computational complexity at all levels of the MSPE.
Interestingly the tangency points of the black, red and green lines on the hypothetical black
doted line correspond to a certain taper range γ∗ between 750km and 1000km. Consequently
Full-scale approximations with a taper range higher/lower than γ∗ are always dominated
through models with more/less basis functions. Moreover γ∗ appears to coincide with the
estimated effective range of the fitted Matérn covariance function. Intuitively this also makes
sense, since this is exactly the scale of spatial dependence where the covariance tapering has
advantages over the fixed rank kriging.

4. Conclusions

This paper investigated approaches to approximate the spatial covariance function and ana-
lyzed the trade-off between the loss in information due to the approximation and the reduc-
tions in computational complexity. Based on a remotely sensed data set of carbon dioxide
concentrations in the mid-troposphere an efficiency evaluation was conducted, monitoring
the predictive performance through the MSPE and the computational complexity through
computation speed and storage requirements. All outlined approaches, namely fixed rank
kriging (Cressie and Johannesson (2006, 2008)), covariance tapering (Furrer et al. (2006))
and the full-scale approximation (Sang and Huang (2012)) were able to notably speed up
the calculations of the important quantities in maximum likelihood estimation and in kriging
predictions, which are the determinant of the covariance matrix of the observed data Σ and
the solution of the system of linear equations Σ−1Z. The required computations rise only
linear with the size of the data set, instead of cubic. However, depending on the degree of
the approximation, controlled by parameters r as the number of random effects in the fixed
rank kriging approach and γ as the taper range in the covariance tapering approach, the loss
in predictive performance differs substantially. In a subset of the data, where the process can
be regarded as stationary, it was shown that covariance tapering outperformed the fixed rank
kriging. However through combining both approaches in a full-scale approximation even more
efficient approximations can be generated. The individual weaknesses, namely the inefficiency
of the fixed rank kriging to describe local spatial dependence and of the covariance tapering to
cover large-scale spatial dependence, can be overcome. In the full data set, involving a strong
non-stationary behavior in the latitude direction, the advantage of the fixed rank kriging is
apparent, since no assumptions on stationarity and/or isotropy have to be made and therefore
the increased process variance in the northern hemisphere can be easily captured. This feature
also translates into the full-scale approximation. Interestingly the analysis gives an idea on
how to choose the approximation parameters r and γ optimally. For each level of the MSPE
the most efficient combination of parameters involves a certain taper range γ∗, which coin-
cides with the effective range of the fitted Matérn covariance function for the CO2 example.
However a thorough investigation of the optimal choice of the approximation parameters, i.e.
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model selection, is left open for future research. The spatial random-effects model (see Sec-
tion 2.1) has also been extended into a spatio-temporal random effects model. In Cressie, Shi,
and Kang (2010),Katzfuss and Cressie (2011) and González-Manteiga, Crujeiras, Katzfuss,
and Cressie (2012) the low-dimensional latent random process is represented by a state-space
model following a vector autoregressive process of order 1, whereas the first paper takes a
filtering perspective, the second paper introduces a smoothing algorithm and the last paper
gives a Bayesian solution to the smoothing problem. Finally an extension for the full-scale
approximation is currently under investigation in Zhang, Sang, and Huang (2013), where the
space-time covariance function is approximated through a large-scale spatio-temporal pro-
cess of low rank and a small-scale spatio-temporal remainder component, which is subject to
covariance tapering.

A. Tables
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Table 3: Efficiency Evaluation - Subset

Time Time Memory Memory
Model Parameters MSPE in sec in sec in GB in GB
Type r γ Σ−1Z̃ det Σ Σ−1Z̃ det Σ

Full Model 0.975 11.0866 12.7267 2.4645 2.3657
Fixed 10 0 3.194 0.00111 0.00037 0.00099 0.00033
Rank 42 0 2.684 0.01967 0.00656 0.01745 0.00574

Kriging 132 0 1.795 0.18632 0.07271 0.17236 0.05666
0 50 3.216 0.00001 0.00001 0.00001 0.00001
0 100 3.186 0.00005 0.00003 0.00005 0.00002
0 200 3.055 0.00067 0.00041 0.00072 0.00024
0 300 2.783 0.00304 0.00185 0.00325 0.00107

Covariance 0 400 2.466 0.00826 0.00526 0.00900 0.00296
Tapering 0 500 2.192 0.01758 0.01197 0.01966 0.00646

0 625 1.963 0.04159 0.02916 0.04708 0.01548
0 750 1.734 0.06561 0.04635 0.07450 0.02449
0 1000 1.482 0.15570 0.11324 0.17895 0.05883
0 1500 1.241 0.47393 0.35510 0.55164 0.18134
10 50 3.184 0.00113 0.00038 0.00100 0.00033
10 100 3.155 0.00115 0.00041 0.00104 0.00034
10 200 3.026 0.00182 0.00074 0.00171 0.00056
10 300 2.759 0.00438 0.00200 0.00424 0.00140

Full-scale 10 400 2.447 0.01292 0.00209 0.00999 0.00328
Approximation 10 500 2.177 0.02048 0.01055 0.02065 0.00679

(r=10) 10 625 1.951 0.04693 0.02531 0.04807 0.01580
10 750 1.726 0.07337 0.04008 0.07549 0.02481
10 1000 1.477 0.16990 0.10052 0.17994 0.05915
10 1500 1.239 0.51520 0.31532 0.55263 0.18167
42 50 2.676 0.01968 0.00656 0.01746 0.00574
42 100 2.654 0.01958 0.00673 0.01750 0.00575
42 200 2.558 0.02024 0.00706 0.01817 0.00597
42 300 2.358 0.02266 0.00845 0.02070 0.00681

Full-scale 42 400 2.121 0.02801 0.01173 0.02645 0.00869
Approximation 42 500 1.912 0.03929 0.01648 0.03711 0.01220

(r=42) 42 625 1.734 0.06663 0.03035 0.06453 0.02121
42 750 1.556 0.09396 0.04422 0.09195 0.03023
42 1000 1.356 0.19425 0.10091 0.19640 0.06456
42 1500 1.163 0.55367 0.30158 0.56909 0.18708
132 50 1.791 0.18665 0.07240 0.17237 0.05666
132 100 1.780 0.18651 0.07260 0.17241 0.05668
132 200 1.736 0.18797 0.07214 0.17308 0.05690
132 300 1.644 0.19186 0.07206 0.17561 0.05773

Full-scale 132 400 1.531 0.19894 0.07361 0.18136 0.05962
Approximation 132 500 1.429 0.21101 0.07757 0.19202 0.06312

(r=132) 132 625 1.338 0.23900 0.09079 0.21944 0.07214
132 750 1.247 0.26698 0.10401 0.24686 0.08115
132 1000 1.140 0.37446 0.15351 0.35131 0.11549
132 1500 1.034 0.76104 0.32702 0.72400 0.23800



24 Efficient Approximation of the Spatial Covariance Function for Large Datasets

Table 4: Efficiency Evaluation - Global Dataset

Time Time Memory Memory
Model Parameters MSPE in sec in sec in GB in GB
Type r γ Σ−1Z̃ det Σ Σ−1Z̃ det Σ

Full Model 2.556 155.6 186.0 14.18 13.79
Fixed 29 0 3.946 0.396 0.264 0.115 0.046
Rank 166 0 3.115 0.620 0.385 0.762 0.341

Kriging 370 0 2.352 2.911 1.499 2.347 1.058
0 50 5.069 0.008 0.005 0.009 0.003
0 100 5.034 0.011 0.007 0.013 0.005
0 200 4.726 0.030 0.019 0.045 0.017
0 300 4.149 0.059 0.035 0.102 0.039

Covariance 0 400 3.752 0.098 0.055 0.175 0.068
Tapering 0 500 3.474 0.153 0.085 0.274 0.106

0 625 3.264 0.235 0.140 0.429 0.168
0 750 3.055 0.317 0.194 0.584 0.230
0 1000 2.840 0.600 0.380 1.017 0.392
0 1500 2.658 1.881 1.259 2.254 0.815
29 50 3.946 0.396 0.264 0.115 0.046
29 100 3.940 0.303 0.266 0.120 0.048
29 200 3.752 0.330 0.278 0.165 0.060
29 300 3.277 0.373 0.294 0.244 0.082

Full-scale 29 400 2.925 0.519 0.315 0.345 0.111
Approximation 29 500 2.672 0.503 0.345 0.482 0.148

(r=29) 29 625 2.480 0.620 0.399 0.696 0.210
29 750 2.288 0.736 0.453 0.911 0.272
29 1000 2.091 1.130 0.640 1.517 0.435
29 1500 1.924 2.839 1.518 3.273 0.858
166 50 3.115 0.620 0.385 0.762 0.341
166 100 3.116 0.632 0.388 0.767 0.343
166 200 3.006 0.659 0.399 0.811 0.356
166 300 2.677 0.722 0.419 0.889 0.377

Full-scale 166 400 2.411 0.769 0.436 0.988 0.406
Approximation 166 500 2.220 0.864 0.465 1.123 0.444

(r=166) 166 625 2.085 1.043 0.520 1.334 0.506
166 750 1.949 1.221 0.574 1.545 0.568
166 1000 1.827 1.754 0.759 2.141 0.730
166 1500 1.738 3.838 1.639 3.867 1.152
370 50 2.352 2.911 1.499 2.347 1.058
370 100 2.368 2.928 1.496 2.352 1.060
370 200 2.337 3.008 1.515 2.396 1.073
370 300 2.160 3.157 1.552 2.474 1.094

Full-scale 370 400 2.002 3.276 1.566 2.574 1.123
Approximation 370 500 1.885 3.401 1.577 2.708 1.161

(r=370) 370 625 1.804 3.726 1.632 2.919 1.222
370 750 1.724 4.050 1.686 3.129 1.284
370 1000 1.660 5.047 1.884 3.734 1.447
370 1500 1.629 7.899 2.707 5.372 1.869
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B. Source Code

The Matlab source code for the fixed rank kriging, basis function calculation and EM-
Estimation was partially taken from the web tutorial on http://www.stat.osu.edu/~sses/

collab_co2.html.

1 function h = distance_spherical(x,y)

2 %DISTANCE_ Determine distances between locations using the Spherical law of cosines

formula

3 %

4 % This function produces a matrix that describes the

5 % distances between two sets of locations.

6 %

7 %INPUT PARAMETERS

8 % x - location coordinates (degrees) for data set #1 [n1 x D] -(long ,lat)

9 % y - location coordinates (degrees) for data set #2 [n2 x D] -(long ,lat)

10 %OUTPUT PARAMETERS

11 % h - distance (km) between points in x from points in y [n1 x n2]

12
13 [n1,D] = size(x);

14 [n2,D2] = size(y);

15
16 if D~=D2

17 error( ' ERROR in DISTANCE_: locations must have same number of dimensions (columns) '
)

18 return

19 end

20
21 h = zeros(n1,n2);

22 if D==1

23 for id = 1:D

24 h = h + (x(:,id)*ones(1, n2)-ones(n1 ,1)*y(:,id) ') .^2;
25 end

26 h = sqrt(h);

27 else

28 r=6371.0087714; %WGS84 mean radius

29 x=x*pi/180;

30 y=y*pi/180;

31 h = r*acos(sin(x(:,2)*ones(1, n2)).*sin(ones(n1 ,1)*y(:,2) ') +cos(x(:,2)*ones(1, n2)

).*cos(ones(n1 ,1)*y(:,2) ') ...
32 .*cos(x(:,1)*ones(1, n2)-ones(n1 ,1)*y(:,1) ') );
33 h=real(h);

34 end

35 return;

Listing 1: Compute geographic distances

1 function S=Basis(loc ,BF_loc)

2
3 for i=1:3

4 [B,IX] = sort(BF_loc{i},1);

5 BF_loc{i}= BF_loc{i}(IX(:,2) ,:);

6 end

7
8 S=zeros(size(loc ,1),size(BF_loc {1},1)+size(BF_loc {2},1)+size(BF_loc {3},1));

9 count =0;

10 for i=1:3

11 hrl=distance_spherical(BF_loc{i},BF_loc{i});

12 rl(i,1) =1.5* min(hrl(hrl >1e-3));

13 for j=1: length(BF_loc{i})

14 count=count +1;

15 h=distance_spherical(BF_loc{i}(j,:),loc);

16 s=(1-(h./rl(i,1)).^2) .^2;

17 s(h>rl(i,1))=0;

18 S(:,count)=s;

http://www.stat.osu.edu/~sses/collab_co2.html
http://www.stat.osu.edu/~sses/collab_co2.html
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19 end

20 end

Listing 2: Evaluate basis functions at specific locations

1 function [K sig_xi ]=EM(S,z,V,sig_eps ,V2)

2
3 n=size(S,1);

4
5 if nargin <5, V2=sparse (1:n,1:n,1); end

6
7 diagV=diag(V);

8 diagV2=diag(V2);

9
10 % initial values

11 varest=var(z,1);

12 K_old =.9* varest*eye(size(S,2));

13 sig2 =.1* varest;

14 t=1;

15 done =0;

16
17 while done==0,

18
19 % update help terms

20 diagDinv =(sig2(t)*diagV2+sig_eps*diagV).^(-1);

21 DInv=sparse (1:n,1:n,diagDinv);

22 tempt=inv(inv(K_old)+S '* DInv*S);
23
24 % update K

25 SigInv2 =(tempt*S ') *DInv;
26 KSDInv=K_old*S '* DInv;
27 KSSigInv=KSDInv -KSDInv*S*SigInv2;

28 muEta=KSSigInv*z;

29 SigEta=K_old -KSSigInv*S*K_old;

30 K_new=SigEta+muEta*muEta ';
31
32 % update sigma_xi (sig2)

33 muEps=sig2(t)*(DInv*z-DInv*S*( SigInv2*z));

34 trSigInv=trace(DInv)-trace(SigInv2*DInv*S);

35 sig2(t+1)=1/n*(n*sig2(t)-(sig2(t))^2* trSigInv+muEps '* muEps);
36
37 % check for convergence

38 diff=sum(sum((K_new -K_old).^2,1) ,2)+(sig2(t+1)-sig2(t))^2;

39 if diff <avgtol *(size(S,2))^2, done =1; end

40 if t>maxit ,

41 done =1;

42 disp(strcat( ' Algorithm did not converge after ' ,num2str(maxit), ' iterations ' ))
;

43 end

44
45 t=t+1

46 K_old=K_new;

47
48 end

49
50 K=K_new;

51 sig_xi=sig2(t);

Listing 3: EM algorithm for the parameters in the Fixed Rank Kriging approach

1 function [y_hat]=FRK(data ,s_pred ,K,sig_xi ,sig_eps ,BF_loc ,V_eps ,V_xi)

2
3 % data is a n x 3 matrix : first column is degrees in Latitude , %

second is degrees in Longitude and %

third is the data values
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4 % s_pred is a n x 2 matrix of the prediction locations

5 % K is the k x k dimensional covariance matrix of the

6 % S_predatial random effect

7 % sig_xi is a scalar , representing the variance parameter of the % micro -scale

variation process

8 % sig_eps is a scalar , representing the variance parameter of the %

measurement error process

9 % BF_loc cell array with the locations of the basis function

10 % centers for each spatial resolution in a different cell

11 % V_eps n x n matrix describing the S_predatial heterogeneity of % the

measurement error process

12 % V_xi n x n matrix describing the S_predatial heterogeneity of

13 % the micro -scale variation process

14
15 if nargin <8, V2=sparse (1: length(data) ,1:length(data) ,1); end

16
17 % Observations

18 lon=data (:,2);

19 lat=data (:,1);

20 z=data (:,3);

21
22 % Prediction locations

23 lon_pred=s_pred (:,2);

24 lat_pred=s_pred (:,1);

25
26 n=size(z,1);

27 m=length(lon_pred);

28
29 % Evaluate spatial basis functions at observation locations

30 S_obs=Basis(data (:,[2 1]),BF_loc);

31
32 % Evaluate spatial basis functions at prediction locations

33 S_pred=Basis([ lon_pred lat_pred],BF_loc);

34
35
36 % Fixed Rank Kriging

37
38 temp=inv(sig_xi*V_xi + sig_eps*V_eps);

39
40 temp2=inv(inv(K)+S_obs '* temp*S_obs);
41
42 E=sparse(m,n);

43 for i=1:n,

44 E(( lon_pred ==lon(i) & lat_pred ==lat(i)),i)=1;

45 end;

46
47 temp3=temp*z-temp*S_obs*(temp2*S_obs '* temp*z);
48
49 y_hat=S_pred *(K*S_obs '* temp3)+sig_xi*E*temp3;

Listing 4: Fixed Rank Kriging predictions

1 function [predtap ]= tappred(data ,s_pred ,sig_eps ,V,Cs,cross)

2
3 % Cs is n x n covariance matrix of the spatial random effect at

4 % the observed location

5 % cross is the n x m matrix of cross covariances between Y at the % prediction

locations and the observed data Z

6
7 lon=data (:,2);

8 lat=data (:,1);

9 z=data (:,3);

10
11 % coordinates of prediction locations

12 lon_pred=s_pred (:,2);

13 lat_pred=s_pred (:,1);
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14
15 n=size(z,1); % number of observations

16 m=length(lon_pred); % number of prediction locations

17
18 SigInvz =(Cs+sig_eps*V)\z;

19
20 %predictions

21 predtap=cross '* SigInvz;

Listing 5: Covariance Tapering predictions

1 function [predFSA ]=FSA(data ,s_pred ,K,sig_xi ,sig_eps ,BF_loc ,V,Cs,cross)

2
3 % observed data

4 lon=data (:,2);

5 lat=data (:,1);

6 z=data (:,3);

7
8 % coordinates of prediction locations

9 lon_pred=s_pred (:,2);

10 lat_pred=s_pred (:,1);

11
12 n=size(z,1); % number of observations

13 m=length(lon_pred); % number of prediction locations

14
15 % Evaluate spatial basis functions at observation locations

16 S=Create_S(data (:,[2 1]),BF_loc);

17
18 % Evaluate spatial basis functions at prediction locations

19 Sp=Create_S ([ lon_pred lat_pred],BF_loc);

20
21 Dinvz=(Cs+sig_eps*V)\z;

22 Dinvs=(Cs+sig_eps*V)\S;

23 SigInvz=Dinvz -Dinvs *((inv(K)+S '* Dinvs)\S '* Dinvz);
24
25 %predictions

26 predFSA=cross '* SigInvz+Sp*(K*S '* SigInvz);

Listing 6: FSA predictions

1 library(matlab)

2 library( ' R.matlab ' )
3 library(fields)

4 library(geoR)

5 library(tcltk)

6 library(gstat)

7 library(rgdal)

8 library(Matrix)

9
10 source( ' D:/CO2/FRK_auflösungen/frkres.R ' )
11 x<-cbind(lonbtR ,latbtR) # observation locations

12 x2<-cbind(lonrausR ,latrausR) # prediction locations

13
14
15 # Compute empirical variogram for the detrended data

16
17 data=data.frame(ztilde ,lonbtR ,latbtR)

18 coordinates(data)=~lonbtR+latbtR

19 proj4string(data)="+proj=longlat"

20 breaks = seq(0, 1500, l = 0.1*1500)

21 variogstat <-variogram(ztilde~1,data ,boundaries=breaks)

22 variogstat$gamma=variogstat$gamma -sig2_eps

23
24 # Fit Exponential Model

25 vmodel=vgm(psill =5.5, model="Exp",range =700, nuget =0)
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26 fitgstat=fit.variogram(variogstat ,model=vmodel ,fit.sills=T,fit.ranges=T,fit.method =1)

27 sill=fitgstat$psill

28 range=fitgstat$range

29
30 # Create tapered covariance matrices based on the detrended data

31 dist <-rdist.earth(x,miles=F)

32 gc()

33
34 Cst <-cov.spatial(dist , cov.model= "exponential",cov.pars=c(sill ,range))*wendland.cov(x

,Dist.args=list(method="greatcircle",miles=F),theta=tapper ,k=2)

35 gc()

36 Cst=as.spam(Cst)

37 gc()

38
39 rm( ' dist ' )
40
41 dist <-rdist.earth(x,x2,miles=F)

42
43 gc()

44
45 cross <-cov.spatial(dist , cov.model= "exponential",cov.pars=c(sill ,range))*wendland.cov

(x,x2,Dist.args=list(method="greatcircle",miles=F),theta=tapper ,k=2)

46 gc()

47 cross=as.spam(cross)

48 gc()

49
50 rm( ' dist ' )
51
52 # Obtain computing times

53
54 V_eps=diag(nrow=length(x[,1]))

55 a<-as.spam(Cst+sig2_eps*V_eps)

56 start <- Sys.time ()

57 blubb=chol(a)

58 b=backsolve(blubb ,ztilde)

59 f=backsolve(t(blubb),b,upper.tri=FALSE)

60 timetap <-as.numeric ((Sys.time () - start),units= ' secs ' )
61
62 a<-as.spam(Cst+sig2_eps*V_eps)

63 start <- Sys.time ()

64 deta=det(a)

65 timedettap=as.numeric ((Sys.time () - start),units= ' secs ' )
66
67 start <- Sys.time ()

68 pred=t(cross)%*%f

69 timepredtap=as.numeric ((Sys.time () - start),units= ' secs ' )
70
71 dist <-rdist.earth(x2,miles=F)

72
73 gc()

74
75 Csp <-cov.spatial(dist , cov.model= "exponential",cov.pars=c(sill ,range))*wendland.cov(

x2,Dist.args=list(method="greatcircle",miles=F),theta=tapper ,k=2)

76 gc()

77 Csp=as.spam(diag(Csp))

78 gc()

79
80 rm( ' dist ' )
81
82 writeMat( ' D:/CO2/R/covmatt.mat ' ,Cst=as.matrix(Cst),Csp=as.matrix(Csp),timecholtap=

timetap ,timedettap=timedettap ,timepredtap=timepredtap)

83 rm( ' Cst ' )
84 rm( ' Csp ' )
85 cross=triplet(cross ,tri=T)

86 gc()

87 writeMat( ' D:/CO2/R/crosst.mat ' ,crosstri=cross)
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88 rm( ' cross ' )
89 gc()

90
91
92 # Compute empirical variogram for the residuals of the fixed rank kriging

93
94 data=data.frame(resFRK ,lonbtR ,latbtR)

95 coordinates(data)=~lonbtR+latbtR

96 proj4string(data)="+proj=longlat"

97 breaks = seq(0, 1500, l = 0.1*1500)

98 variogstat <-variogram(resFRK~1,data ,boundaries=breaks)

99 variogstat$gamma=variogstat$gamma -sig2_eps

100
101 # Fit exponential Model

102 vmodel=vgm(psill =5.5, model="Exp",range =700, nuget =0)

103 fitgstat=fit.variogram(variogstat ,model=vmodel ,fit.sills=T,fit.ranges=T,fit.method =1)

104 sill=fitgstat$psill

105 range=fitgstat$range

106
107 # Compute covariance matrices for the tapering part of the full -scale approximation

108
109 dist <-rdist.earth(x,miles=F)

110
111 gc()

112
113 CsFSA <-cov.spatial(dist , cov.model= "exponential",cov.pars=c(sill ,range))*wendland.cov

(x,Dist.args=list(method="greatcircle",miles=F),theta=tapper ,k=2)

114 gc()

115 CsFSA=as.spam(CsFSA)

116 gc()

117
118 rm( ' dist ' )
119
120 dist <-rdist.earth(x,x2,miles=F)

121
122 gc()

123
124 crossFSA <-cov.spatial(dist , cov.model= "exponential",cov.pars=c(sill ,range))*wendland.

cov(x,x2,Dist.args=list(method="greatcircle",miles=F),theta=tapper ,k=2)

125 gc()

126 crossFSA=as.spam(crossFSA)

127 gc()

128
129 rm( ' dist ' )
130
131 # Computation time

132
133 V_eps=diag(nrow=length(x[,1]))

134 a<-as.spam(CsFSA+sig2_eps*V_eps)

135 start <- Sys.time ()

136 blubb=chol(a)

137 b=backsolve(blubb ,ztilde)

138 dinvz=backsolve(t(blubb),b,upper.tri=FALSE)

139 b=backsolve(blubb ,S)

140 dinvs=backsolve(t(blubb),b,upper.tri=FALSE)

141 blubb=chol(solve(K)+t(S)%*%dinvs)

142 b=backsolve(blubb ,t(S))

143 temp=backsolve(t(blubb),b,upper.tri=FALSE)

144 Siginvz=dinvz -dinvs%*%(temp%*%dinvz)

145 timecholFSA=as.numeric ((Sys.time () - start),units= ' secs ' )
146
147 start <- Sys.time ()

148 deta=det(solve(K)+t(S)%*%dinvs)%*%(det(solve(K))^(-1))%*%det(a)

149 timedetFSA=as.numeric ((Sys.time () - start),units= ' secs ' )
150
151 start <- Sys.time ()
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152 pred=t(crossFSA)%*%Siginvz+Sp1%*%(K%*%t(S)%*%Siginvz)

153 timepredFSA=as.numeric ((Sys.time () - start),units= ' secs ' )
154
155 dist <-rdist.earth(x2,miles=F)

156
157 gc()

158
159 CspFSA <-cov.spatial(dist , cov.model= "exponential",cov.pars=c(sill ,range))*wendland.

cov(x2,Dist.args=list(method="greatcircle",miles=F),theta=tapper ,k=2)

160 gc()

161 CspFSA=as.spam(diag(Csp1))

162 gc()

163
164 rm( ' dist ' )
165 writeMat( ' covmatFSA.mat ' ,CsFSA=as.matrix(CsFSA),CspFSA=as.matrix(CspFSA),timecholFSA=

timecholFSA ,timedetFSA=timedetFSA ,timepredFSA=timepredFSA)

166 crosS=triplet(crosS ,tri=T)

167 gc()

168 writeMat( ' crossFSA.mat ' ,crosStri=crosS)
169 rm( ' CsFSA ' )
170 rm( ' CspFSA ' )
171 rm( ' crossFSA ' )
172 gc()

173
174
175 # Computation time for Fixed Rank Kriging

176 V_eps=diag(nrow=length(x[,1]))

177 a<-as.spam(sig2_eps*V_eps)

178 start <- Sys.time ()

179 blubb=chol(a)

180 b=backsolve(blubb ,ztilde)

181 dinvz=backsolve(t(blubb),b,upper.tri=FALSE)

182 b=backsolve(blubb ,S)

183 dinvs=backsolve(t(blubb),b,upper.tri=FALSE)

184 blubb=chol(solve(K)+t(S)%*%dinvs)

185 b=backsolve(blubb ,t(S))

186 temp=backsolve(t(blubb),b,upper.tri=FALSE)

187 Siginvz=dinvz -dinvs%*%(temp%*%dinvz)

188 timecholfrk=as.numeric ((Sys.time () - start),units= ' secs ' )
189
190 start <- Sys.time ()

191 deta=det(solve(K)+t(S)%*%dinvs)%*%(det(solve(K))^(-1))%*%det(a)

192 timedetfrk=as.numeric ((Sys.time () - start),units= ' secs ' )
193
194 start <- Sys.time ()

195 pred=Sp1%*%(K%*%t(S)%*%Siginvz)

196 timepredfrk=as.numeric ((Sys.time () - start),units= ' secs ' )
197
198
199 writeMat( ' timefrk.mat ' ,timepredfrk=timepredfrk ,timedetfrk=timedetfrk ,timecholfrk=

timecholfrk)

Listing 7: Variogram-Fitting and performance evaluation

1 b=10; % b-fold crossvalidation

2 Indices = crossvalind( ' Kfold ' , length(ztilde), b);

3
4 load( ' data.mat ' ) % data , locations and basis function centers

5
6 for k=1:b,

7 lonbt=lon(Indices ~=k);

8 latbt=lat(Indices ~=k);

9 zbt=ztilde(Indices ~=k);

10 zraus{k}= ztilde(Indices ==k);

11 latraus=lat(Indices ==k);

12 lonraus=lon(Indices ==k);
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13
14 S_obs=Create_S ([ lonbt latbt],BF_loc);

15
16 n=length(zbt);

17 V_eps=sparse (1:n,1:n,1);

18 data=[latbt lonbt zbt];

19 s_pred =[ latraus lonraus ];

20
21 % EM-Estimation of K and sigma^2_xi

22 [K sig_xi ]= EMestimation(S_obs ,zbt ,V_eps ,sig_eps);

23
24 % FRK -Predictions

25 [pred_FRK{k}]=FRK(data ,s_pred ,K,sig_xi ,sig_eps ,BF_loc ,V_eps);

26
27 % Calculate FRK -Residuals

28 s_obs=[latbt lonbt];

29
30 [pred_frk_obs ]=FRK(data ,s_obs ,K,sig_xi ,sig_eps ,BF_loc ,V_eps);

31 resFRK=zbt -pred_frk_obs;

32
33 lonbtR=lonbt;

34 latbtR=latbt;

35 lonrausR=lonraus;

36 latrausR=latraus;

37
38 i=0;

39 for tapper =[50 100:100:500 625 750 1000 1500],

40 i=i+1

41 delete ' frkres.R '
42 delete ' crosst.mat '
43 delete ' covmatt.mat '
44 delete ' crossFSA.mat '
45 delete ' covmatFSA.mat '
46
47 % Estimation of Covariance matrices based on the Covariance

48 % Tapering / Full -scale approximation and the recording of the % computing times is

done in R-Software

49
50 saveR( ' frkres.R ' , ' resFRK ' , ' lonbtR ' , ' latbtR ' , ' latrausR ' , ' lonrausR ' , ' zbt ' , ' tapper ' , '

sig2_eps ' );
51 eval([ ' !C:/ PROGRA ~1/R/R -2.15.2/ bin/x64/Rscript ' ' Variogram_fitting
52 .R ' ]);
53
54 load( ' crosst.mat ' )
55 load( ' covmatt.mat ' )
56 Cst=sparse(Cst);

57 cross=sparse(double(crosstri.i),double(crosstri.j),crosstri.values ,n,length(lonraus));

58 clear crosstri

59
60 [predtap{i}]= tappred(data ,s_pred ,sig_eps ,V_eps ,Cst ,cross);

61
62 clear Cst

63 clear cross

64
65 load( ' crossFSA.mat ' )
66 load( ' covmatFSA.mat ' )
67 CsFSA=sparse(CsFSA);

68 crossFSA=sparse(double(crossFSAtri.i),double(crossFSAtri.j),crossFSAtri.values ,n,

length(lonraus));

69 clear crossFSAtri

70
71 [predFSA{i}]=FSA(data ,pred_locs ,K,sig_xi ,sig_eps ,V_eps ,CsFSA ,crossFSA);

72
73 clear CsFSA

74 clear crossFSA

75
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76 tapperm(i)=tapper;

77
78 %Calculate MSE

79
80 MSE_FSA(i)=(1/ length(zraus{k}))*((( zraus{k}-predFSA{i}).^2) '* ones(length(zraus{k}) ,1))

;

81 MSEtap(i)=(1/ length(zraus{k}))*((( zraus{k}-predtap{i}).^2) '* ones(length(zraus{k}) ,1));
82
83 end

84
85 MSE_FSAs{k}=MSE_FSA -sig2_eps;

86 MSEtaps{k}=MSEtap -sig2_eps;

87
88 end

89
90 for k=1:b,

91 MSE_FRK(k)=(1/ length(zraus{k}))*((( zraus{k}-pred_FRK{k}).^2) '* ones(length(zraus{k}) ,1)
)-sig2_eps;

92 end

93
94 MSE_FRK=mean(MSE_FRK);

95
96 MSE_FSA=MSE_FSAs {1};

97 MSEtap=MSEtaps {1};

98 for k=2:b,

99 MSE_FSA =[ MSE_FSA; MSE_FSAs{k}];

100 MSEtap =[ MSEtap; MSEtaps{k}];

101 end

102
103 MSE_FSA=mean(MSE_FSA ,1);

104 MSEtap=mean(MSEtap ,1);

Listing 8: Cross-Validation study
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