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Abstract

This article investigates standardized versions of the signed likelihood ratio test statis-
tic for inference concerning the mean and percentiles of a lognormal distribution based
on samples subject to multiple detection limits. The standardized versions considered are
due to DiCiccio, Martin and Stern (2001). Computational algorithms are provided and
numerical results are given to assess the performance of the proposed methods, and to
make comparisons with competing procedures. It is noted that the standardized signed
likelihood ratio test statistics provide accurate inference for the above lognormal parame-
ters even for small samples that include non-detects resulting from the presence of multiple
detection limits. Furthermore, in the context of hypothesis testing, they are seen to pro-
vide comparable or better performance in terms of power, compared to a test based on
the generalized inference methodology. The results are illustrated using two examples on
environmental applications.

Keywords: lognormal mean, lognormal percentile, parametric bootstrap, signed likelihood ratio
test statistic, type I censoring..

1. Introduction

The lognormal distribution plays a crucial role in the analysis of environmental data and expo-
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sure data, since the relevant observations are positive, and very often, positively skewed. Even
though normal based methods can be obviously applied for analyzing the log-transformed
data, the lognormal distribution still presents some unique features; for example, the lognor-
mal mean and variance are functions of both the mean and variance of the log-transformed
data. Inference concerning the lognormal mean (and variance) can be challenging, especially
when accurate small sample inference is desired. The problems become especially challenging
when the samples are subject to detection limits, which will result in Type I left censored
data. Based on a Type I censored sample from a normal distribution, different procedures
to compute confidence intervals for the mean, variance and the quantiles are investigated in
Jeng and Meeker (2000). The authors do note that for the interval estimation of percentiles,
the results are not entirely satisfactory when the data are Type I censored; see also the article
by Wong and Wu (2000) and the discussion by Doganaksoy and Schmee (2000). It should be
noted that inference concerning the lognormal mean is not addressed in these articles. More
recently, Krishnamoorthy, Mallick and Mathew (2011) have investigated inference concerning
the mean and percentiles of a lognormal distribution based on a sample subject to a single
detection limit. Several competing methods were considered and their performance was nu-
merically studied. The procedures investigated included the signed log-likelihood ratio test
(SLRT) statistic, a modified signed log-likelihood ratio test (MSLRT) statistic, and generalized
inference, i.e., methodology based on the generalized p-value and generalized confidence in-
terval. Even though higher order modifications of the SLRT statistic are expected to improve
the accuracy of the normal approximation, the MSLRT statistic due to Fraser, Reid and Wu
(2011), investigated in Krishnamoorthy, Mallick and Mathew (2011), showed unsatisfactory
performance; in fact, the MSLRT statistic often exhibited worse performance compared to the
SLRT statistic in terms of coverage probabilities of the resulting confidence intervals for the
lognormal mean and percentiles. However, the generalized inference methodology did exhibit
satisfactory performance regardless of the sample size and regardless of the proportion of the
data below the detection limit. Even in the presence of multiple detection limits, accuracy
of the generalized inference methodology has recently been noted in Krishnamoorthy and
Xu (2011), once again for inference concerning the lognormal mean and percentiles. In the
absence of a detection limit, the generalized inference methodology for inference concerning a
lognormal mean (or for comparing two lognormal means) is investigated in Krishnamoorthy
and Mathew (2003), and MSLRT statistics for a single lognormal mean is investigated in Wu,
Wong, and Jiang (2003) and Wu, Wong, and Wei (2006); the resulting inferences turned out
to be highly accurate. In a recent article, Bhaumik et. al. (2013) have considered the prob-
lem of testing hypotheses concerning a single lognormal mean, and have compared four tests:
based on Student-t, Edgeworth expansion, generalized p-value, and a permutation approach.
The authors conclude that among the four tests they have investigated, only the generalized
p-value test and the permutation test can be recommended for practical use. The purpose
of this article is to apply two higher order modifications of the SLRT statistic for inference
concerning the lognormal mean and percentiles, and compare them with methodologies based
on generalized inference.

In order to introduce the set up of our investigation, let Y be a random variable following the
lognormal distribution, so that X = lnY ∼ N(µ, σ2), where µ and σ2 are, respectively, the
mean and variance of the log-transformed quantity X. The lognormal mean is then given by

exp
(
µ+ σ2

2

)
, and the pth percentile of the lognormal distribution is given by exp(µ+ zpσ),

where zp denotes the pth percentile of the standard normal distribution. Thus inferences
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concerning the lognormal mean and percentiles are equivalent to those concerning µ+ σ2

2 and
µ + zpσ, respectively. Let y1, y2, ...., yn be a random sample of size n from the lognormal
distribution, and let xi = ln yi, i = 1, 2, ...., n, so that the xi’s form a random sample from
N(µ, σ2). Suppose the data are subject to k detection limits, to be denoted by DL1,...,DLk
on the log-scale. We assume without loss of generality that DL1 < DL2 < ... < DLk. We
also assume that ni measurements have been obtained by the ith laboratory procedure or
device with detection limit DLi and n =

∑k
i=1 ni. Furthermore, suppose mi non-detects are

below DLi, and letm =
∑k
i=1mi. Here, mi’s are independent binomial random variables with

number of trials ni and “success probability” pi = Φ
(
DLi−µ

σ

)
, where Φ(x) is the standard

normal cumulative distribution function. In the present context, pi’s are unknown proportions
of non-detects. This is the set up where the generalized inference methodology is investigated
in Krishnamoorthy and Xu (2011), and in Krishnamoorthy, Mallick and Mathew (2011),
where the latter paper is in the context of a single detection limit.

We shall now provide a brief outline of the higher order procedures that we propose to use
in this article. Even though only the MSLRT statistic due to Fraser, Reid and Wu (2011)
is considered in Krishnamoorthy, Mallick and Mathew (2011), several higher order versions
of the SLRT statistic are available in the literature, depending on the model assumptions.
They also differ in terms of accuracy of the normal approximation, and in terms of ease of
implementation; see Barndorff-Nielsen (1991), Skovgaard (1996) and DiCiccio, Martin and
Stern (2001). In particular, DiCiccio, Martin and Stern (2001) have proposed two simulation
based methods to improve upon the accuracy of the normal approximation of the SLRT
statistic; in the present investigation, we shall apply these simulation based methods. In
order to introduce these, let (ψ,λ′)′ be a vector parameter in a statistical model, where ψ is
a scalar parameter of interest. Furthermore, let l(ψ,λ) denote the log-likelihood function for

(ψ,λ′)′ based on observed data. We also denote the MLE of (ψ,λ′)′ by (ψ̂, λ̂
′
)′. Furthermore,

for a fixed ψ, the MLE of the nuisance parameter λ will be denoted by λ̂ψ. For inference
concerning ψ, the signed log-likelihood ratio test (SLRT) statistic, denoted by R(ψ), is given
by

R(ψ) = sign(ψ̂ − ψ)
[
2
{
l(ψ̂, λ̂)− l(ψ, λ̂ψ)

}]1/2
, (1)

where sign(x) is +1 or −1 depending on whether x > 0 or x < 0, respectively. In general, it
is known that R(ψ) follows a standard normal distribution up to an error of O(n−1/2).

Two third-order accurate methods are proposed in DiCiccio, Martin and Stern (2001). For a
fixed value of ψ, let the mean and variance of R(ψ) defined above be denoted by m(ψ, λ̂ψ)

and v(ψ, λ̂ψ), respectively, where these quantities are evaluated at λ = λ̂ψ. Now define the
modified statistic RM (ψ) by standardizing R(ψ):

RM (ψ) =
R(ψ)−m(ψ, λ̂ψ)√

v(ψ, λ̂ψ)
. (2)

Then, as noted in DiCiccio, Martin and Stern (2001), RM (ψ) follows a standard normal
distribution up to an error of O(n−3/2). Another third-order accurate method consists of
computing the cdf of R(ψ) at a point t as P

λ̂ψ
(R(ψ) ≤ t), where the notation implies that

the probability is once again evaluated at λ = λ̂ψ, for a fixed ψ. As noted in DiCiccio, Martin

and Stern (2001), analytic expressions are very often not available for the mean m(ψ, λ̂ψ) and
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variance v(ψ, λ̂ψ) of R(ψ). However, these quantities can be easily approximated based on a

parametric bootstrap procedure, i.e., based on Monte Carlo simulation of R(ψ) when λ = λ̂ψ,
for a fixed ψ. Such a Monte Carlo simulation can also be used to calculate the probability
P
λ̂ψ

(R(ψ) ≤ t).

In this article, we investigate the aforementioned third order accurate methods for inference
concerning the lognormal mean and percentiles based on samples that are subject to multiple
detection limits. It turns out that the above higher order modifications do provide highly
accurate inference for the lognormal mean as well as percentiles in the presence of multiple
detection limits, regardless of the sample size, and regardless of the proportion of non-detects.
As noted in DiCiccio, Martin and Stern (2001), a major appeal of the procedures is that
once the SLRT statistic is obtained, the proposed modifications are easily implemented via
simulation. Details appear in the next section for inference concerning the lognormal mean.
We then take up the inference problems concerning lognormal percentiles based on samples
subject to multiple detection limits. In order to assess the accuracy of the proposed methods,
numerical results are given consisting of type I error probabilities of tests concerning the
lognormal mean and percentiles. The proposed methods indeed exhibit excellent performance
irrespective of the sample size, number of detection limits, and proportion of the data below
the detection limits. Since the generalized inference methodology is also quite accurate, as
noted in Krishnamoorthy and Xu (2011), it is natural to compare it with the higher order
procedures. In order to facilitate this comparison, simulated powers are reported. For testing
hypothesis concerning the lognormal mean, the higher order procedures turned out to have a
significant edge in terms of power, compared to the generalized inference procedure. However,
the powers are rather similar, for testing hypothesis concerning lognormal percentiles. The
overall conclusion is that the higher order procedures investigated in this article provide
accurate and easily implementable methodologies for analyzing lognormal samples subject to
multiple detection limits.

2. Likelihood based procedures for the lognormal mean

Recall our notation that in a sample of n observations from the lognormal distribution, ni
measurements have been obtained by the ith laboratory procedure or device with its own
detection limit, so that n =

∑k
i=1 ni. Furthermore, among the ni observations obtained by

the ith laboratory procedure or device, mi of them are non-detects, i.e., they are below the
corresponding detection limit, and let m =

∑k
i=1mi. Let DL1, ..., DLk denote the detection

limits on the log-scale, where we assume that DL1 < DL2 < ... < DLk. Without loss of
generality, let the detected observations be y1, y2, ...., yn−m, and let xi = ln yi, i = 1, 2, ....,
n−m. Define

x̄d =
1

n−m

n−m∑
i=1

xi and s2d =
1

n−m

n−m∑
i=1

(xi − x̄d)2. (3)

The log-likelihood function, after omitting a constant term, can be written as

k∑
i=1

mi lnΦ(z
∗
i )−

(n−m)

2
lnσ2 − (n−m)(s2d + (x̄d − µ)2)

2σ2
, (4)

where z∗i = DLi−µ
σ , i = 1, ..., k, and Φ(.) denotes the standard normal cdf. Now let µ̂ and σ̂2

denote the maximum likelihood estimates of µ and σ2, respectively, obtained by maximizing
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the above log-likelihood function. These can be numerically obtained using the bivariate
Newton-Raphson iterative method; for details see the Appendix.

2.1. Testing hypothesis concerning the lognormal mean

The parameter of interest is ψ = µ+σ2

2 , and consider the problem of testing the null hypothesis

ψ = ψ0. The MLE of ψ is ψ̂ = µ̂ + σ̂2

2 . The above log-likelihood can obviously be written
as a function of ψ and σ2, say l(ψ, σ2). For the fixed null value ψ0 of ψ, let σ̂2ψ0

denote the

constrained MLE of σ2; that is, σ̂2ψ0
is the value of σ2 that maximizes the likelihood function

l(ψ0, σ
2) =

k∑
i=1

mi lnΦ(ziψ0)−
(n−m)

2
lnσ2 − (n−m)

2σ2

s2d +
(
x̄d − ψ0 +

σ2

2

)2
 , (5)

where ziψ0 = DLi−ψ0

σ + σ
2 . The computational details are once again given in the Appendix.

In terms of these MLEs, the signed LRT statistic, say R(ψ0), is given by

R(ψ0) = sign(ψ̂ − ψ0)
{
2[l(ψ̂, σ̂2)− l(ψ0, σ̂

2
ψ0
)]
}1/2

. (6)

We shall now consider the two third order modifications due to DiCiccio, Martin and Stern
(2001); see equation (2), and the material following this equation. Let

RM (ψ0) =
R(ψ0)−m(ψ0, σ̂

2
ψ0
)√

v(ψ0, σ̂2ψ0
)

, (7)

where m(ψ0, σ̂
2
ψ0
) and v(ψ0, σ̂

2
ψ0
) are, respectively, the mean and variance of R(ψ0) when

σ2 = σ̂2ψ0
. Both m(ψ0, σ̂

2
ψ0
) and v(ψ0, σ̂

2
ψ0
) can be easily approximated based on a parametric

bootstrap procedure consisting of Monte Carlo simulation of R(ψ0) when σ2 = σ̂2ψ0
. The

second method suggested in DiCiccio, Martin and Stern (2001) consists of computing tail
probabilities concerning R(ψ0) evaluated at σ2 = σ̂2ψ0

, which can once again be obtained by
Monte Carlo simulation. The appropriate tail area clearly provides a p-value for testing the
hypothesis ψ = ψ0.

The following algorithm (parametric bootstrap) can be used for the estimation of m(ψ0, σ̂
2
ψ0
)

and v(ψ0, σ̂
2
ψ0
):

Algorithm 1

For a given sample of size n with detection limits DL1, ..., DLk (on the log scale), let ni denote
the size of the sample analyzed by the ith laboratory, i = 1, ..., k, so that

∑k
i=1 ni = n, where

we also note that ni ≥ mi for each i.

1. Compute the MLEs µ̂, σ̂2 and, for a given ψ0, compute the constrained MLE σ̂2ψ0
;

we refer to the Appendix for details regarding the computation of these. Set µ̂0 =
ψ0 − σ̂2ψ0

/2.

2. Generate a sample of size ni from N(µ̂0, σ̂
2
ψ0
), i = 1, ..., k.

3. Discard the observations from the ith sample that are less than DLi, i = 1, ..., k. Let
mi denote the number of observations below DLi, i = 1, ..., k, so that m =

∑k
i=1mi.
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4. Compute the MLEs µ̂∗ and σ̂∗2 by maximizing (4), and the constrained MLE σ̂∗2ψ0
by

maximizing (5).

5. Compute R∗(ψ0) = sign(ψ̂∗−ψ0)
{
2[l(ψ̂∗, σ̂∗2)− l(ψ0, σ̂

∗2
ψ0
)]
}1/2

, where ψ̂∗ = µ̂∗+ σ̂∗2/2

6. Repeat steps 1–4 for a large number of times, say, 10,000.

7. The mean and the standard deviation of the 10,000 R∗(ψ0) are the parametric bootstrap
estimates of m(ψ0, σ̂

2
ψ0
) and v(ψ0, σ̂

2
ψ0
), respectively.

Tail probabilities concerning R(ψ0) can be similarly evaluated at σ2 = σ̂2ψ0
.

Oncem(ψ0, σ̂
2
ψ0
) and v(ψ0, σ̂

2
ψ0
) are obtained, RM (ψ0) in (7) can be computed, and can be used

for testing the hypothesis H0: ψ = ψ0, by comparing the value of RM (ψ0) to the appropriate
standard normal percentile. The second option is to compute a p-value by estimating the
appropriate tail probability ofR(ψ0), evaluated at σ2 = σ̂2ψ0

. For example, for testingH0 : ψ ≥
ψ0 against the alternative H1 : ψ < ψ0, the p-value can be computed as Pσ2=σ̂2

ψ0

[R(ψ0) ≥ r0],
where r0 is the observed value of R(ψ0).

2.2. Numerical Results

We shall now report the estimated Type I error probabilities of three tests for testing hypoth-
esis concerning the lognormal mean based on samples that are subject to one, two or three
detection limits. We shall consider the hypotheses H0 : ψ ≥ ψ0 versus H1 : ψ < ψ0, and the
tests considered are: (i) the test based on the SLRT statistic R(ψ0) in (6), (ii) the test based
on the modified statistic RM (ψ0) in (7), and (iii) the test based on the p-value computed
as Pσ2=σ̂2

ψ0

[R(ψ0) ≥ r0], where r0 is the observed value of R(ψ0). In our tables, the tests

are denoted as SLRT, SLRT-PB1 and SLRT-PB2, respectively. While preparing the tables,
instead of specifying the detection limit, we have specified the proportion of the data that
are expected to be below the respective detection limits. This is denoted by p1 when there is
only one detection limits, (p1, p2) when there are two detection limits, and (p1, p2, p3) when
there are three detection limits. Throughout, we have assumed a null value ψ0 = 3. The type
I error probabilities are reported in Table 1 for sample size n = 10, 15 and 20, and σ = 1 and
3; the value of µ is then determined so that ψ0 = µ+ σ2

2 = 3. The values reported in the first
block (row wise) of Table 1 are type I error rates based on samples with a single detection
limit and proportion of non-detects p1; the values in the second block are for samples which
include two detection limits, and those in the third block are for samples with three detection
limits. We observe from the table that, for most cases, the type I error rates the SLRT are
always larger than the nominal level, whereas those of SLRT-PB1 and SLRT-PB2 are both
very close to the nominal level. It is quite clear that the tests SLRT-PB1 and SLRT-PB2 are
both satisfactory even when the proportion of non-detects is quite high.

We shall now consider the powers of three competing tests: the tests SLRT-PB1 and SLRT-
PB2, as well as the test based on the generalized p-value. In their recent paper, Krishnamoor-
thy and Xu (2011) have noted the satisfactory performance of the generalized p-value test in
the multiple detection limit scenario, even when the proportion of non-detects is quite high.
Here we shall not give details of the generalized p-value test; we refer to Krishnamoorthy
and Xu (2011). In our power comparison, we have not included the test based on the SLRT
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statistic, since its type I error performance is not satisfactory. Numerical results on the power
are given in Table 2. For sample sizes n = 15 and 30, the first part of Table 2 gives the
powers for testing H0 : ψ ≥ 4.5 versus H1 : ψ < 4.5, for the parameter values µ = 0 and
σ = 3, 2.5, 2 and 1.5. Since we have assumed µ = 0, the value of ψ is 4.5 when σ = 3;
thus the corresponding power values are simply the type I error probabilities. The remaining
entries are the powers. The second part of Table 2 assumes σ = 1, and considers the testing
of H0 : ψ ≥ 3.5 versus H1 : ψ < 3.5. Powers values are now tabulated for µ = 3, 2.5, 2,
1.5, where the power values when µ = 3 are simply the type I error probabilities. The type
I error probabilities are quite satisfactory for the generalized p-value test, as already noted
in Krishnamoorthy and Xu (2011). The overall conclusion regarding the power is that both
tests SLRT-PB1 and SLRT-PB2 have an edge over the generalized p-value test in terms of
power. The gain in power is sometimes rather substantial for SLRT-PB1; for example, see
the powers corresponding to µ = 2 in the second part of the table. It should be noted that
the generalized p-value test also requires the computation of the MLE, along with simulation,
for its implementation, as noted in Krishnamoorthy and Xu (2011). The computational effort
required to implement SLRT-PB1 and SLRT-PB2 is essentially the same as that required for
the generalized p-value test. The satisfactory performance in terms of type I error, and the
improved performance in terms of power make the tests SLRT-PB1 and SLRT-PB2 attractive
for practical use. Of particular interest is the observation that the suggested tests exhibit ex-
cellent performance even when the sample size is not large, and regardless of the proportion
of the data below the detection limits. Our limited simulations results suggest that the test
SLRT-PB1 is to be preferred among the three tests.

Clearly, confidence intervals for the lognormal mean can be obtained using the above test
statistics. Furthermore, the confidence intervals will have coverage probabilities close to
the nominal level, except those based on the SLRT statistic, and these are expected to be
liberal. Given the excellent performance of the test based on SLRT-PB1 (in terms of power),
confidence intervals based on the SLRT-PB1 statistic will also provide confidence intervals
having the smallest expected width.

3. Likelihood based procedures for lognormal percentiles

We shall now consider inference concerning the pth percentile of the lognormal distribution.
Thus the parameter of interest is η = µ + zpσ, where zp denotes the pth percentile of the
standard normal distribution. The log-likelihood function can be written as a function of η
and σ2, to be denoted as l(η, σ2):

l(η, σ2) =
k∑
i=1

mi lnΦ(ziη)− (n−m) ln(σ)− n−m
2σ2

(
s2d + (x̄d − η + zpσ)

2
)
, (8)

where ziη = DLi−η
σ + zp. The constrained MLE of σ2, under the constraint η = η0, can be

obtained by maximizing the above likelihood function, after replacing η by η0; for computa-
tional details, see the Appendix. The test statistics SLRT, SLRT-PB1 and SLRT-PB2 can
now be computed following procedures similar to what is explained in the previous section.

Table 3 gives the type I error rates of the above three tests for testing the hypothesis H0 : η ≥
η0 versusH0 : η < η0. We have used the same set up as in Table 1. Regarding the performance
of the tests in terms of type I error probability, the conclusions are similar to those in the
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previous section. Table 4 gives the powers of three tests: the tests SLRT-PB1 and SLRT-PB2,
as well as the test based on the generalized p-value, in the set up of Table 2. All three tests
exhibit very similar performance in terms of power. In view of these conclusions regarding
the performance of the three tests, the corresponding confidence intervals will exhibit similar
performance in terms of coverage probability and expected width.

Remark 1. In Section 2 and Section 3, we have presented our results in the context of a
Type I left-censored sample. If a sample is Type I right censored, then the procedure for a
left-censored sample can be easily modified based on the symmetry of the normal distribution,
since the log-transformed data multiplied by −1 results in a Type I left censored sample; see
also Remark 1 in Krishnamoorthy, Mallick and Mathew (2011).
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4. Illustrative examples

We shall now present two examples in order to illustrate the results in the previous sections.
Both the examples involve two detection limits each.

Example 1. We shall use the Atrazine concentration data as given in Table 9.7 of Helsel (2005,
p. 159) to illustrate the procedures described in the preceding sections. The original data were
altered by adding a second detection limit at .05 (see Helsel, 2005, p. 229). The probability
plot in Figure 5.5 of Helsel (2005) indicates that lognormality assumption is tenable.

Table 5: Atrazine concentrations (µg/L) in a series of Nebraska wells before June

.38 < .05 < .01 .03 .03 .05 .02 < .01 < .01 < .01 .11 .09

< .01 < .01 < .01 < .01 .02 < .05 .02 .02 .05 .03 .05 < .01

For this data set, n = 24, m1 = 9 and m2 = 2. The MLEs based on the log-transformed data
are µ̂ = −4.206, and σ̂ = 1.462. Since the numbers of non-detects are m1 = 9 and m2 = 2, n1
must be at least 9 and n2 must be at least 2. We assume that n1 = 18 and n2 = 6. Using these
values of n1 and n2, Krishnamoorthy and Xu’s (2011) approximate pivotal method yielded
a 95% upper confidence limit for µ − z.9σ as .272. The SLRT-PB1 and SLRT-PB2 methods
both yielded the same 95% upper confidence limit .268. The SLRT produced the value .236.

We also computed 95% confidence intervals for the mean Atrazine concentration. The SLRT-
PB1 method produced a 95% confidence interval for the mean as (.021,.258), and the SLRT-
PB2 method produced (.021, .256). The 95% upper confidence limits are .167 (SLRT-PB1)
and .168 (SLRT-PB2). Krishnamoorthy and Xu (2011) have applied generalized variable
approach to find confidence interval of the mean for this example. The reported 95% two-
sided confidence interval is (.023, .247), and the 95% one-sided upper limit for the mean is
.166.

Example 2. The data below are measurements of the concentration of zinc (micrograms per
liter) in shallow ground water from Alluvial Fan zone in the San Joaquin Valley, California
(Millard and Deverel, 1988). The original data were altered by ignoring one missing value
and deleting an outlier 620. The normal probability plot of the resulting data, after log-
transformation, indicated that a lognormal distribution is tenable. For this data, n = 66,

Table 6: Zinc concentrations ((µg/L) in groundwater at a geological zone in the San Joaquin
valley, California

Alluvial Fan Zone

<10 10 20 20 <10 11 10 33 17
9 10 20 10 10 19 <10 10 10
5 10 20 20 <10 8 10 20 <10
18 <10 <10 20 10 <3 10 10 10
<10 10 10 20 7 <10 20 10 20
12 <10 20 <10 <10 <10 20 10 29
10 10 40 20 10 <10 30 20 < 10
11 50 23

and there are two detection limits on the original scale, namely 3 and 10, with m1 = 1 and
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m2 = 15. The MLEs based on log-transformed data are µ̂ = 2.456 and σ̂ = .577. We are
interested in a 95% upper confidence limit for the 90th percentile of the zinc concentration
distribution. The SLRT produced the upper limit as 29.22. The SLRT-PB1 yielded 29.55,
and the SLRT-PB2 yielded 29.61. The generalized variable approach due to Krishnamoorthy
and Xu (2011) produced 29.74.

5. Discussion

It is well known that accurate analysis of type I censored data is difficult, especially in the
small sample scenario, even when a parametric assumption such as lognormality holds. As far
as we are aware, satisfactory procedures are not available for computing confidence intervals
and hypothesis tests, in spite of the extensive literature on the problem. Most of the litera-
ture deal with point estimation, but avoid discussion of confidence intervals and hypothesis
tests. In an article commenting on the issue of non-detects, Helsel (2010, p. 261) notes that
“Method evaluations for estimating a mean do not necessarily carry over to the more diffcult
issues of how to compute interval estimates, upper percentiles, a correlation coeffecient, a
regression slope and intercept, or a multidimensional surface when left censoring is present.
There are many interesting issues still to be evaluated.” In other words, Helsel is highlight-
ing the lack of accurate confidence intervals and tests. Our work proposes the application
of higher order modifications of the signed log-likelihood ratio test statistics for inference
concerning the lognormal mean and percentiles, based on a type I censored sample resulting
from the presence of multiple detection limits. The modifications we have used are given
in DiCiccio, Martin and Stern (2001), and we could successfully apply them to the present
investigation. The methodology we have developed is attractive from two perspectives: (i)
they appear to be accurate regardless of the sample size, regardless of the number of detection
limits, and regardless of the proportion of non-detects, and (ii) the required computation and
implementation are simple and straightforward. Our overall conclusion is that the method-
ologies proposed in DiCiccio, Martin and Stern (2001) provide accurate inference concerning
the lognormal mean and percentiles, and the procedures are easy to understand, as well as
straightforward to apply. In short, our contribution demonstrates that an existing method-
ology can provide accurate analysis of data subject to non-detects, when no other accurate
methods have been pointed out in the literature. Given the extensive applications of the
lognormal distribution for the modeling and analysis of environmental as well as exposure
data, and given the frequent occurrence of non-detects, it is hoped that this work will provide
much needed framework and methodology for analyzing such data.

Appendix: Computation of MLE and constrained MLE

As the parametric bootstrap procedure requires repeated computations of the MLEs based
on simulated samples, some details on computations of the MLEs and the constrained MLE
are given below.

The MLEs µ̂ and σ̂ are the roots of the equations,

f1(µ, σ) =
∂l(µ, σ)

∂µ
= (n−m)

x̄d − µ
σ

−
k∑
i=1

miξ(z
∗
i ) = 0
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f2(µ, σ) =
∂l(µ, σ)

∂σ
= −(n−m) +

1

σ2
(n−m)(s2d + (x̄d − µ)2)−

k∑
i=1

miz
∗
i ξ(z

∗
i ) = 0,

where z∗i = (DLi − µ)/σ and ξ(x) = ϕ(x)/Φ(x). These roots may be computed using
the Newton-Raphson method. The necessary partial derivatives to implement the Newton-
Raphson scheme are

f1µ(µ, σ) =
∂2l(µ, σ)

∂µ2
= −(n−m)

σ
− 1

σ

k∑
i=1

miF (z
∗
i )

f1σ(µ, σ) =
∂2l(µ, σ)

∂µ∂σ
= −(n−m)(x̄d − µ)

σ2
− 1

σ

k∑
i=1

miz
∗
i F (z

∗
i )

f2σ(µ, σ) =
∂2l(µ, σ)

∂σ2
= − 2

σ3
(n−m)(s2d + (x̄d − µ)2) +

1

σ

k∑
i=1

miz
∗
i ξ(z

∗
i )

− 1

σ

k∑
i=1

miz
∗2
i F (z

∗
i ),

where F (x) = xξ(x) + ξ2(x). The Newton-Raphson iterative relation is given by(
µ
σ

)
←
(
µ0
σ0

)
−
(
f1µ(µ0, σ0) f1σ(µ0, σ0)
f1σ(µ0, σ0) f2σ(µ0, σ0)

)−1(
f1(µ0, σ0)
f2(µ0, σ0)

)
, (9)

where µ0 and σ0 are the initial guess values for the roots. The mean x̄d and the standard
deviation sd based on the detected observations can be used as initial values for µ0 and σ0,
respectively.

A.1 Calculation of the constrained MLE of σ2 under the constraint ψ = µ+ .5σ2

Letting λ = σ2, it can be checked that the required partial differential equation ∂l(ψ0,λ)
∂λ =

h(λ) = 0, where l(ψ0, λ) is given in (5), simplifies to

h(λ) =
1

2λ3/2

k∑
i=1

mi
ϕ(ziψ0)

Φ(ziψ0)

(
λ

2
− (DLi − ψ0)

)
+

(n−m)

2λ2
[(s2d + (x̄d − ψ0)

2)− λ2/4− λ] = 0.

Furthermore,

h′(λ) =
1

2λ3/2

k∑
i=1

mi
ϕ(ziψ0)

Φ(ziψ0)

(
3

2

(
DLi − ψ0

λ

)
− 1

4

)

− 1

2λ3/2

k∑
i=1

mi

ϕ(ziψ0)

Φ(ziψ0)
ziψ0 +

(
ϕ(ziψ0)

Φ(ziψ0)

)2
(λ

2
− (DLi − ψ0)

)
z′iψ0

− (n−m)

λ3

(
s2d + (x̄d − ψ0)

2 − λ

2

)
,

where z′iψ0
= 1

2λ

(√
λ
2 −

DLi−ψ0√
λ

)
. To compute the constrained MLE σ2ψ0

, the following

Newton-Raphson iterative scheme

λ← λ− h(λ)

h′(λ)
,
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with the variance s2d as an initial value, can be used.

A.2 Computation of the constrained MLE of σ2 under the constraint η = µ+ zpσ

Let λ = σ2. The partial derivative of (8) with respect to λ can be expressed as

h(λ) =
√
λ

k∑
i=1

mi
ϕ(ziη)

Φ(ziη)
(DLi − η) + (n−m)

[
λ−
√
λzp(x̄d − η)− s2d − (x̄d − η)2

]
= 0,

where ziη =
DLi−η√

λ
+ zp. The constrained MLE of λ is the root of the equation h(λ) = 0. To

find this root using the Newton-Raphson method, the derivative

h′(λ) =
∂h(λ)

∂λ
=

1

2
√
λ

m∑
i=1

mi(DLi − η)
ϕ(ziη)

Φ(ziη)
+

1

2λ

m∑
i=1

mi(DLi − η)2
ziη ϕ(ziη)

Φ(ziη)
+

(
ϕ(ziη)

Φ(ziη)

)2


+ (n−m)

[
1− 1

2
√
λ
(x̄d − η)

]
.

The Newton-Raphson iterative scheme is

λ← λ− h(λ)

h′(λ)
,

which can be implemented with the initial value s2d.

Calculation of ξ(x) = ϕ(x)/Φ(x)

We used “Intel Visual Fortran 11 with IMSL libraries” for all computations. During the
iterative process, we noticed that the term ξ(x) = ϕ(x)/Φ(x) may cause overflow error. This
overflow error can be avoided as follows. Note that ξ(x) → 0 as x → ∞ and ξ(x) → ∞ as
x→ −∞. The overflow errors occur for large negative values of x. This error can be avoided
by defining ξ(x) ≃ −x for x < −20 and ξ(x) = ϕ(x)/Φ(x) for −20 ≤ x <∞.
An alternative expression for ξ(x), which somewhat speeds up the repeated computations of
the MLEs and the constrained MLE, is based on the polynomial expression for the standard
normal distribution function given in Hart et al. (1968, p. 137). Let

P0 = 913.167442114755700, P1 = 1024.60809538333800,
P2 = 580.109897562908800, P3 = 202.102090717023000,
P4 = 46.0649519338751400, P5 = 6.81311678753268400,
P6 = 6.047379926867041E − 1, P7 = 2.493381293151434E − 2,
and
Q0 = 1826.33488422951125, Q1 = 3506.420597749092,
Q2 = 3044.77121163622200, Q3 = 1566.104625828454,
Q4 = 523.596091947383490, Q5 = 116.9795245776655,
Q6 = 17.1406995062577800, Q7 = 1.515843318555982,
Q8 = 6.25E − 2.

Define

g(x) =
P7x

7 + P6x
6 + P5x

5 + P4x
4 + P3x

3 + P2x
2 + P1x+ P0

Q8x8 +Q7x7 +Q6x6 +Q5x5 +Q4x4 +Q3x3 +Q2x2 +Q1x+Q0
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In terms of g(x), the function ξ(x) can be expressed as

ξ(x) =


(

1
ϕ(x) −

√
2πg(x)

)−1
, for x > 0,(

g(−x)
√
2π
)−1

, for x < 0.
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