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Abstract

Current ecological research seeks to understand the mechanisms that sustain biodiver-
sity and allow a large number of species to coexist. Coexistence concerns inter-individual
interactions. Consequently, there is an interest in identifying and quantifying interactions
within and between species as reflected in the spatial pattern formed by the individuals.
This study analyses the spatial pattern formed by the locations of plants in a commu-
nity with high biodiversity from Western Australia. We fit a pairwise interaction Gibbs
marked point process to the data using a Bayesian approach and quantify the inhibitory
interactions within and between the two species. We quantitively discriminate between
competing models corresponding to different inter-specific and intraspecific interactions
via posterior model probabilities. The analysis provides evidence that the intraspecific
interactions for the two species of the genus Banksia are generally similar to those between
the two species providing some evidence for mechanisms that sustain biodiversity.

Keywords: Gibbs point processes; Multivariate spatial point patterns; Reversible jump Markov
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http://www.jenvstat.org


2 Pairwise Interaction Point Processes

1. Introduction

1.1. Modelling Biodiverse Plant Communities

Mechanisms or biological processes which maintain biodiversity and hence facilitate the co-
existence of a large number of species have been the focus of numerous ecological studies
(Grinnell 1917; Janzen 1970; Hubbell 1997; Siepielski and McPeek 2002; Wright 2002; Mur-
rell and Law 2003; Zillio and Condit 2007). Consequently, an understanding of such processes
is of central importance to biodiveristy preservation.

Modelling species interactions in a spatial context involves analysing the spatial pattern
formed by individuals in ecological communities to reveal the individuals’ local interactions
and hence to inform on the interaction structure in a community (Murrell and Law 2003). A
spatial point pattern therefore can be considered as a spatial signature, which, if decoded, can
shed light on the interactions among and within the species in a plant community. A growing
number of publications has focused on the analysis of these spatial point patterns both based
on descriptive statistics (Liebhold and Gurevitch 2002; Wiegand and Moloney 2004; Comas
and Mateu 2007) and on point process models (Thompson 1955; Gatrell et al. 1996; Khaemba
2001).

Spatial point process models describe the overall properties of spatial patterns, while taking
every individual in a community into account (Illian et al. 2008). Both in the ecological and
in the statistical literature, most studies using spatial point processes, model the pattern
formed by a single species only (Illian et al. 2012; Ewel and Hiremath 2006; Møller and
Waagepetersen 2003; Diggle 2003; Callaway 1995). So far, few studies involve multivariate
patterns i.e. patterns formed by two or more species (Baddeley and Turner 2000; Wiegand
et al. 2007; Illian et al. 2009; Picard et al. 2009). However, in models of multi-species patterns
the number of ”intra-”, and ”inter-” specific interactions and hence the number of interaction
parameters grows with the number of species. Hence suitable methods for model selection
are required to compare different models and to avoid over-parameterization. In this analysis
we consider a two species (bivariate) dataset comprising of species of the same genus.

1.2. The Dataset

The dataset comprises of two species of the genus Banksia, from a 22 × 22 metre plot from
Cataby, Western Australia (Armstrong 1991). The two species have been classified as re-
sprouters, which exhibit a particular fire regeneration strategy. Resprouters regenerate from
root stocks after a fire (Bell 2001). Due to low nutrient levels in the sandy soil that char-
acterize the study area, resprouters reproduce very slowly but the existing individual plants
are likely to have existed in the same location for a very long time (Armstrong 1991; Illian
et al. 2009). Overall, environmental conditions, in particular the nutrient and water levels
in the soil may be considered homogeneous within the plot (Armstrong 1991; Illian et al.
2009). As a result of the homogeneity of the soil conditions, this dataset allows us to model
interactions within a plant community without the need to include environmental spatially
explicit covariates that potentially impact on the pattern.

To illustrate the proposed approach, we consider the spatial pattern formed by two resprouter
species, Banksia menziesii and Banksia attenuata. We develop a Bayesian approach to fitting
spatial point processes models, in particular Gibbs processes, and consider reversible jump
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methods to discriminate between competing models in terms of the interactions present within
and between species (or intra- and inter-specific interactions respectively). Figure 1 illustrates
the bivariate point pattern formed by the two resprouter species in this study.

[Figure 1 about here.]

1.3. Exploratory analysis

An exploratory analysis of the data was conducted using the L-function Besag (1977) and
the pair correlation function (Diggle 1983; Baddeley et al. 2007; Stoyan and Penttinen 2000;
Illian et al. 2008; Law et al. 2009) .

L-function

The L-function was introduced by Besag (1977), and is strongly related to Ripley’s K function.
This function is commonly expressed as L(r), where r denotes the interaction radius, may
be used to assess point patterns for complete spatial randomness. Typically, the empirical L-
function is compared to that obtained for a point pattern derived from Poisson point process
(theoretical L-function). The value of the theoretical L-function is equal to r for a stationary
Poisson process at all distances. In this analysis, the L-function was plotted for each species,
each with a corresponding simulation envelope obtained from 10,000 instances (Figure 2) of
a Poisson point process.

[Figure 2 about here.]

In each plot, the theoretical L-function is denoted by a dotted red line and the empirical
L-function by a solid black curve. If the curve obtained for the empirical L-function was
above/below the simulation envelope, this could indicate the possibility of clustering/regularity
beyond that expected under conditions of complete spatial randomness (CSR). The inclusion
of simulation envelopes around the line for the theoretical L-function gives us an indication
of how much deviation is associated with the realisations.

In general, the curve for the empirical L-function for Banksia menziesii fluctuates above
and below the reference line representing the theoretical L-function. Despite this, the curve
remains within the simulation envelopes. For Banksia attenuata, the curve for the empir-
ical L-function is observed to be predominantly above the line representing the theoretical
L-function, this however remains within the simulation envelopes. Overall, we note that
both plots fall within the respective simulation envelopes thus providing no evidence against
complete spatial randomness at the exploratory level.

Pair correlation function

The pair correlation function, commonly expressed as g(r), is also useful in providing a spatial
summary of a given point pattern. Specifically, g(r) provides an indication of the dependency
of points at a given distance r for a given point pattern. This function is a derivative of
Ripley’s K function and is expressed as

g(r) =
K ′(r)

2πr
∀r ≥ 0.



4 Pairwise Interaction Point Processes

For point pattern which exhibits CSR, g(r) = 1 for all values of r. If g(r) > r this suggests
that there is spatial dependency between the points. That is, the interpoint distance r occurs
more frequently than under conditions of CSR. The converse is true for g(r) < 1. If g(r) = 0,
this suggests that there are no points within the specified interpoint distance r. In this case r
is termed a ‘hard core radius’. The pair correlation function was plotted for both species and
is shown in Figure 3 with simulation envelopes obtained from 10,000 replications of a Poisson
point process.

[Figure 3 about here.]

From Figure 3 it is clear that for each species, the corresponding empirical plot fluctuates
above and below the reference line, but remains within the simulation envelopes. This suggests
that there is no evidence against CSR.

These summary characteristics only provide preliminary results and are limited in that each
analysis only assess the behaviour of a single species in the study area. A more formal
approach would include point process models which provide estimates of the interactions
between species. We focus on these models in the next section.

2. Method

2.1. Gibbs processes, specific model choice

Gibbs processes are point processes which model patterns exhibiting inhibition or aggregation,
i.e. interaction among the points (Illian et al. 2008). We consider a pairwise-interaction Gibbs
process (Baddeley and Turner 2000) to model a bivariate point pattern. In particular, we let
the points in a given point pattern x, contained in a bounded region in space W , represent
objects of interest such as plants. If each point is accompanied by additional information
(such as which species it represents) the point pattern is a marked point pattern (Illian et al.
2008). Each point is associated with a mark m ∈ M where M is the mark space. In our
example we let the marks denote the different species of interest so that M = {1, 2}.
A Gibbs process is characterized by a set of intensity and interaction parameters. The intensity
parameters, are denoted by β1 and β2 and represent the intensity of plants per unit area
(1dm2) from species 1 and species 2, respectively. The full parameter set for the Gibbs
process used here is denoted by θ = {β1, β2, γ11, γ22, γ12}.
In general, pairwise interaction processes are suitable for modelling regular point patterns,
whereas area interaction point processes are appropriate for modelling aggregated point pat-
terns (King et al. 2012). In the pairwise interaction process we consider here, interactions
within or between species groups are negative interactions and are inhibitory in nature. The
interaction parameters take values within the range of 0 to 1 where lower values indicate a
higher degree of inhibition. In the special case where the interaction parameter is 0 there is
hard core inhibition such that there is a circle of fixed interaction radius around each plant
within which no other plant is found. Conversely, an interaction parameter of 1 corresponds
to no interaction resulting in complete spatial randomness.

Let n1 and n2 denote the number of individuals in species 1 and 2 respectively, and set
υ1 = {υ11, . . . , υ1n1} and υ2 = {υ21, . . . , υ2n2} where υij denotes the jth point for species i.
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For notational convenience the full set of data is denoted by υ = {υ1,υ2}.
To specify the interaction function we follow Illian et al. (2009). For the two point patterns
υ1 and υ2 we express the interaction function s(υ1|υ2) as

s(υ1|υ2) =

n1∑
i=1

n2∑
j=1

h(‖υ1i − υ2j‖), (1)

where ‖υ1i−υ2j‖ represents the Euclidean distance between υ1i and υ2j . We express h in the
form:

h(r) =

{
(1− (r/R)2)2 if 0 < r ≤ R

0 otherwise,

where R is a fixed interaction radius as mentioned earlier. We note that for this interaction
function, the magnitude of the interaction between plants is not considered to be constant
as for example in a Strauss process, but to decrease with increasing distance (up to a fixed
distance R).

The interaction parameters γ11, γ22 and γ12 represent the interaction within conspecifics of
species 1, within conspecifics of species 2 and between individuals from species 1 and 2,
respectively.

The corresponding pseudolikelihood of the data can be expressed as a function of the intensity
parameters β = {β1, β2} and the interaction parameters γ = {γ11, γ22, γ12} (Baddeley and
Turner 2000). In particular we have,

f(υ;θ) = αβn1
1 βn2

2 γ
s(υ1|υ1)
11 γ

s(υ2|υ2)
22 γ

s(υ1|υ2)+s(υ2|υ1)
12 ,

where α is an intractable normalising constant given by

α = exp

(
−β1

∫
W
γ
t(u,v1)
11 γ

t(u,v2)
12 du− β2

∫
W
γ
t(u,v1)
12 γ

t(u,v2)
22 du

)
, (2)

for the function t defined below. Let u be an arbitrary point in the study region W . For
i = 1, 2, we set

t(u,υi) =

ni∑
k=1

h(‖u− υik‖). (3)

An approximation to this integral term can be obtained by using numerical integration tech-
niques such as the Berman-Turner device (Baddeley and Turner 2000). This pseudolikelihood
is expressed for the saturated model which contains all the possible interactions γ11, γ22 and
γ12. Submodels can be defined by different combinations of the presence or absence of these
three interaction parameters. In total, for a bivariate point pattern, eight different models can
be constructed corresponding to the inclusion or exclusion of each of the different interaction
terms in the model.

Border edge correction was used in this analysis. Consequently, parameter estimation is based
on a ‘reduced sample’ or subregion of W , such that all the points in the subregion are within
at least R units from the boundary of W . Note that the points which are within R units from
the boundary of W , or ‘edge points’, are still considered as possible ‘neighbours’ of points in
the ‘reduced sample’. The reduced sample can be expressed as:

WR = {u ∈W : B(u,R) ⊂W}
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where B(u,R) represents a disc of radius R centered at u. R is chosen here to be equivalent
in value to the chosen interaction radius.

The application of border edge correction results in estimating the pseudolikelihood described
above using a modified interaction function. The interaction function described in Equation
1, is redefined such that s(υi|υj) is estimated by s(υ−

i |υj) and the integral in Equation 2 is
now expressed over WR instead of W . As a result of the renewed specification of the domain
for this integral, the function t, described in Equation 3 is redefined such that u ∈WR rather
than the previous specification of u ∈W .

Various methods have been proposed for estimating the interaction radius used in point pro-
cesses when relevant knowledge is not available. The consideration of the radius of interaction
as a model parameter has been explored by Illian et al. (2008) and Berthelsen and Møller
(2002). Illian et al. (2008) construct a hierarchical model of one group of species given the
spatial location of a second species group. For this analysis a flat prior of N(0, σ2) restricted
to [0,∞) is used for the interaction radii parameters. One challenge identified in this study
is that for a highly biodiverse dataset, the high dimensionality of the set of interaction radii
results in high computational costs. Alternatively, Berthelsen and Møller (2002) treat the
interaction radius as a parameter where spatial birth and death processes are used for perfect
simulation of univariate Gibbs point processes.

In other studies the interaction radius is derived from biological knowledge (King et al. 2012;
Illian and Hendrichsen 2010) and visual inspection of exploratory plots such as the plot of
Ripley’s K function (Picard et al. 2009). King et al. (2012) and Illian and Hendrichsen (2010)
both model musk-oxen herds using different modelling approaches. Illian and Hendrichsen
(2010) and Møller and Waagepetersen (2003) note that the interaction radius may be more
formally estimated by using a profile likelihood approach.

For the dataset considered in this paper, the interaction radii specified are based on biological
background information provided and cited by Illian et al. (2008). A range for the interaction
radius for each of the species considered in this analysis is provided. The range for the
interaction radius for B. attenuata is 1.5− 4.0 m and that for B. menziesii is 0.5− 2.5 m. We
adopt an interaction radius of 2.5m for each species.

2.2. Bayesian Approach

We adopt a Bayesian approach for inference on the model parameters. The joint posterior
distribution of the parameters is formed by combining the likelihood of the data with the
corresponding prior distribution of the parameters. However, in our case we do not have
an explicit likelihood function, but a pseudolikelihood. The use of the pseudolikelihood in a
Bayesian context has been proposed by several authors including Efron (1993); Chang and
Mukerjee (2006); Ventura et al. (2009).

For notational convenience we let the pseudolikelihood of the data given the parameters be
denoted as f(υ|θ). The posterior distribution of the parameters can be written as:

π(θ|υ) ∝ f(υ|θ)p(θ),

where p(θ) denotes the prior on the model parameters. Given the specification of the model
(i.e. specific interaction terms present in the model), and the corresponding priors on the
parameters we can obtain posterior estimates of interest using a Markov chain Monte Carlo
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(MCMC) algorithm. However due to the additional model uncertainty we extend the pos-
terior distribution to incorporate this additional level of uncertainty. In particular, we treat
the model itself as a discrete parameter and form the joint posterior distribution over both
parameter and model space, given by,

π(θ,m|υ) ∝ fm(υ|θ)p(θ|m)p(m),

where θ defines the set of parameters in model m, fm(υ|θ) represents the pseudolikelihood
of the data given model m, p(θ|m) the prior distribution for the parameters in model m and
p(m) the prior probability for model m.

To explore the posterior distribution and to obtain posterior summary statistics, we use a
reversible jump (RJ) MCMC approach (Green 1995). This approach comprises two distinct
steps.

Step 1. Update the parameters, conditional on the model, using the Metropolis Hastings
algorithm.

Step 2. Update the model itself using a reversible jump step.

We consider only the second step in detail, since the Metropolis Hastings algorithm used in
the first step is a standard random walk Metropolis update (Brooks 1998).

For the reversible jump step suppose that at iteration k, the Markov chain is in model m
with parameter vector θ so that the current model state is denoted as (θ,m). We initially
propose to move to a new model, m′ where we choose each alternative model with equal
probability. Given the proposed model we generate new parameter values θ′ ∼ q(θ′) where q
is some proposal distribution function described in more detail below. We accept the move
with probability min(1, A), where

A =
π(θ′,m′|υ)P (m|m′)q(θ)

π(θ,m|υ)P (m′|m)q(θ′)

∣∣∣∣dθ′dθ

∣∣∣∣ .
We note that the probabilities of moving from model m to model m′, expressed as P (m′|m)
and from model m′ to model m, expressed as P (m|m′), are equal (= 1

7) and cancel in the

acceptance probability. The final Jacobian term,
∣∣∣dθ′dθ

∣∣∣, is simply equal to unity, so that the

acceptance probability term A, reduces to,

A =
π(θ′,m′|υ)q(θ)

π(θ,m|υ)q(θ′)
.

The final quantity to be defined in the updating step is the proposal density q. For this
study, the proposal density q is a multivariate normal density function with mean (SD) and
covariance matrix obtained from an initial pilot MCMC simulation for the given model. For
further discussion of the MCMC reversible jump algorithm in ecological contexts see for
example, King et al. (2009).

3. Results

3.1. Bayesian Analysis

We specify independent priors on each of the parameters. Without any prior information we
set β1 ∼ U [0, 1] and β2 ∼ U [0, 1] and specify a hierarchical prior (Gelman 2006; Gustafson
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et al. 2006) on the interaction parameters. In particular, we set log γ ∼ N(0, σ2) for γ =
γ11, γ12, γ22 where σ ∼ U [0, 10].

We initially present the results for each individual model, before considering the issue of model
selection. In each model the MCMC algorithm is run for 10, 000 iterations with the first 1000
iterations discarded as burn-in. Running independent simulations from over-dispersed starting
points produced essentially identical results and standard convergence diagnostics such as the
BGR statistic (Brooks and Gelman 1998) suggested the chains had converged. The posterior
summary statistics of the parameters in each individual model are given in Table 1. The results
also indicate that the intraspecific interaction for both species is relatively lower than that
of the interspecific interaction. For example, in the saturated model, model 8, the posterior
mean (SD) for the interspecific interaction is 0.028 (0.029) whereas that for the intraspecific
interaction parameters are 0.591 (0.224) and 0.405 (0.182).

Overall, the posterior estimates obtained indicate that there is a negative relationship between
the intensity parameters and the interaction parameters. This is to be expected, since smaller
values of the interaction parameters correspond to increased inhibitions (either between or
within species) which will typically result in an increased intensity to explain the observed
point pattern and number of observed points (and vice versa). This negative correlation is
clearly demonstrated in the posterior correlation between the intensity and associated inter-
action parameters. For example, in the saturated model, the posterior correlation between
intensity and intraspecific interaction in species 1 is −0.561 in the case of species 2, the
posterior correlation is −0.471.

[Table 1 about here.]

We now consider the issue of model selection. The corresponding posterior model probabilities
are also provided in Table 1. The model with the highest posterior probability corresponds
to model 5, which contains one interaction parameter (γ12): the interaction between the two
species. We note however that models 6 and 7 received similar posterior support (0.099, and
0.094). All models identified with non-negligible support contain the between species inter-
action parameter, γ12 indicating that the parameter and hence the interaction are important.
The corresponding posterior probabilities for the presence of γ11 and γ22 are similar, being
equal to 0.117 and 0.112 or, equivalently, Bayes Factors (Kass and Raftery 1995) of 0.132
and 0.126, respectively (assuming all interactions are present) indicating a lack of posterior
support for each within-species interaction.

In the saturated model, the posterior probability that γ12 is less than γ11 is 1; similarly, the
posterior probability that γ12 is less than γ22 is 1. Recall that lower values of the interaction
parameter corresponds to a greater level of inhibition. This demonstrates the importance of
the between species interaction within the model, and hence a high posterior model probability
of being present. In the case of the intraspecific interaction estimates, the probability that
γ11 is greater than γ22 is 0.260, suggesting the level of within-species inhibition in species 2
is higher than that of species 1.

[Table 2 about here.]

We now consider the issue of prior sensitivity of the model parameters on the posterior model
probabilities (the model parameters were insensitive to vague prior specifications). We used
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a hierarchical prior on the variance of the interaction terms, σ2, and set σ ∼ U [0, 10]. Note
that the estimation of this parameter is expected to be poor due to the very limited amount
of information relating to this parameter. In addition, this parameter, σ, is present in all
models except for model 1 (corresponding to the Poisson process). Thus, we would anticipate
that changing the upper limit of the uniform prior would have limited impact on the posterior
model probabilities within those models that contain an interaction (models 2-8). We consider
the priors σ ∼ U [0, 1] and σ ∼ U [0, 100], with the corresponding posterior model probabilities
obtained given in Table 2.

In our case, increasing the upper limit of the uniform prior on σ2 does not result in any
significant changes in the posterior model probabilities. Placing a much lower value for the
upper limit does have some impact on the posterior model probabilities, in the case that
the limit begins to influence the posterior distribution for σ by constraining the values the
parameter can take. For example, specifying a U [0, 1] prior on σ results in a more constrained
distribution for γ12. However, this prior would not be regarded as uninformative as it strongly
influences the set of values the parameter can take due to its restrictive nature.

3.2. Interaction radius sensitivity

The interaction radii (or ‘zones of influence’) used for the species in this analysis are based
on the ranges suggested by (Illian et al. 2009). The range for the interaction radius for B.
attenuata is 1.5 − 4.0 m and that for B. menziesii is 0.5 − 2.5 m. We adopt an interaction
radius sensitivity analysis using the same priors and interaction function described earlier.
The additional interaction radii considered are 1.0, and 3.5 (recall previously that a radius
of 2.5m was used). Figure 4 shows the reduced dataset (bivariate point pattern) after border
edge correction has been applied for each of the radii considered.

[Figure 4 about here.]

The results of the interaction radius sensitivity test are shown in Figure 3. The results
indicate that as the interaction radius is increased, the posterior estimates for the interaction
parameters increase in magnitude suggesting a decrease in the degree of inhibition between
plants concerned. This is especially true for the intraspecific interaction parameters. Finally,
the effect of the choice of interaction radius on model discrimination was also considered. The
results indicate that the choice of interaction does affect the model which receives the highest
posterior support. The posterior probabilities for the interspecific interaction parameter for
radii 1.0, 2.5 and 3.5 are 0.040, 1.000, and 0.605 respectively.

[Table 3 about here.]

[Table 4 about here.]

4. Discussion

The analysis of bivariate (or multivariate) spatial point patterns of species can lead to an
understanding of the interactions involved within and among different types (or species) of
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individuals forming the patterns. We have considered a Bayesian approach to analysing
bivariate point patterns, with particular focus on model choice, i.e. on the assessment of the
presence/absence of interactions present within the pattern. In particular, we obtain posterior
model probabilities for the different competing models that quantitatively discriminate among
the competing models and hence interactions present using a pilot-tuned reversible jump
MCMC algorithm.

Biologically, the interactions are interpreted as competitive interactions where the magnitude
of the interaction gives an indication of the ‘competitive strength’. In this analysis, we are
able to not only quantify the presence/absence of the parameters for models where there is
more than one interaction present, but also to obtain the relative strength of the interactions,
by calculating the posterior probability that one interaction is greater than another. For
our dataset, the intraspecific inhibitory interactions occurring in both resprouter species were
found to be of similar strength. For the interaction between the two species there was strong
evidence of the parameter representing this interaction should be included in the model.

Both species considered in this analysis are of the same genus, Banksia and hence possess
similar biological characteristics. This is a possible explanation for the fact that the posterior
estimates of the intraspecific interaction parameters were of similar magnitude. The posterior
mean (SD) of the intraspecific interaction parameters for species 1 and 2 are 0.591 (0.224)
and 0.405 (0.182), respectively, indicating that there is no evidence for a decisive character-
isation of the nature of the intraspecific interaction. This is corroborated by the results of
the exploratory analysis. With regard to the inter-specific interaction between the species,
Richardson et al. (1995) describe the interaction between Banksia species as most strongly
competitive (in comparison with the interaction between individuals of the Banksia species
and other species) due to the fact that individuals of Banksia possess common features such
as similar growth form and germination biology. Again, this is also evident in the results
obtained. The value of the posterior estimate for the interspecific interaction parameter is
comparatively much lower than that of the other interaction parameters. Individuals of two
species exhibit proteoid or cluster roots, a feature common to all species of the genus Banksia.
This root system involves masses of lateral roots giving rise to a dense horizontal root mat sys-
tem. The inhibitory interaction between the two species could be due to competition between
the species at the level of nutrient uptake by the root system. Connor and Bowers (1987)
suggest that inter-specific competition gives rise to spatial signatures inherent in spatial point
patterns.

Possible extensions to this approach in general include the use of covariates in the model,
the consideration of asymmetric interactions between species and the use of area interaction
point processes (Baddeley and Lieshout 1995; Comas and Mateu 2007). The inclusion of
environmental covariates in the modelling process would lead to more complex point processes.
Finally, the extension to multivariate point processes with more than two species is an area of
active research where we consider novel approaches to circumventing the huge computational
costs to modelling a highly diverse ecological communities.
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mental Statistics, 3.

Janzen DH (1970). “Herbivores and the Number of Tree Species in Tropical Forests.” The
American Naturalist, pp. 104–501.

Kass RE, Raftery AE (1995). “Bayes Factors.”Journal of the American Statistical Association,
90, 773–795.

Khaemba WM (2001). “Spatial Point Pattern Analysis and its Application in Geographical
Epidemiology.” International Journal of Applied Earth Observation and Geoinformation,
3, 139 – 145.

King R, Illian JB, King SE, Nightingale GF, Hendrichsen DK (2012). “A Bayesian Approach
to Fitting Gibbs Processes with Temporal Random Effects.” Journal of Agricultural, Bio-
logical, and Environmental Statistics, 17, 601–622.

King R, Morgan BJT, Gimenez O, Brooks SP (2009). Bayesian Statistics for Population
Ecology. Chapman and Hall/CRC.

Law R, Illian J, Burslem DFRP, Gratzer G, Gunatilleke CVS, Gunatilleke IAUN (2009).
“Ecological information from spatial patterns of plants insights from point process theory.”
Journal of Ecology, 97, 616–628.

Liebhold A, Gurevitch J (2002). “Integrating the Statistical Analysis of Spatial Data in
Ecology.” Ecography, 25, 553–557.



Journal of Environmental Statistics 13

Møller J, Waagepetersen RP (2003). Statistical Inference and Simulation for Spatial Point
Processes. Chapman and Hall/CRC.

Murrell DJ, Law R (2003). “Heteromyopia and the Spatial Coexistence of Similar Competi-
tors.” Ecology Letters, 6, 48–59.

Picard N, Bar-Hen A, Mortier F, Chadoeuf J (2009). “The Multi Scale Marked Area Interac-
tion Point Processes: A Model for the Spatial Pattern of Trees.” Scandinavian Journal of
Statistics, 36, 23–41.

Richardson DM, Cowling RM, Lamont BB, van Hensbergen HJ (1995). “Coexistence of
Banksia Species in Southwestern Australia: The Role of Regional and Local Processes.”
Journal of Vegetation Science, 6, 329 – 342.

Siepielski AM, McPeek MA (2002). “On the Evidence for Species Coexistence: A Critique of
the Coexistence Program.” Oecologia, 130, 1–14.

Stoyan D, Penttinen A (2000). “Recent applications of point process methods in forestry
statistics.” Statistical Science, 15, 61–78.

Thompson HR (1955). “Spatial Point Processes, with Applications to Ecology.” Biometrika,
42, 102 – 115.

Ventura L, Cabras S, Racugno W (2009). “Prior distributions from pseudo-likelihoods in the
presence of nuisance parameters.” J. Amer. Statist. Assoc., 104, 768–774.

Wiegand T, Gunatilleke S, Guantilleke N (2007). “Species Associations in a Heterogeneous
Sri Lankan Dipterocarp Forest.” The American Naturalist, 170, E77–E95.

Wiegand T, Moloney KA (2004). “Rings, Circles, and Null Models for Point Pattern Analysis
in Ecology.” Oikos, 104, 209–229.

Wright S (2002). “Plant Diversity in Tropical Forests: a Review of Mechanisms of Species
Coexistence.” Oecologia, 130, 1–14.

Zillio T, Condit RS (2007). “The Impact of Neutrality, Niche Differentiation and Species
Input on Diversity and Abundance Distributions.” Oikos, 116, 931–940.

Affiliation:

Glenna F. Nightingale
Department of Geography and Geosciences, University of St Andrews
St Andrews, Scotland
E-mail: glenna.evans@gmail.com

Journal of Environmental Statistics http://www.jenvstat.org

Volume 7, Issue 3 Submitted: 2015-01-25
September 2015 Accepted: 2015-09-01

mailto:glenna.evans@gmail.com
http://www.jenvstat.org


14 FIGURES

Figure 1: Plot showing the point pattern for both species considered in this analysis. Banksia
menziesii is denoted in dark-blue font and Banksia attenuata in red font.



FIGURES 15

(a) (b)

Figure 2: Illustration of (a) a plot of the L-function for (Banksia attenuata), and (b) a plot
of the L-function for Banksia menziesii. In both cases a simulation envelope is included
representing 10,000 simulations of a point pattern with complete spatial randomness (CSR).
The dark line on the plot represents the observed value of L(r) for the data, the red line
represents that for the data simulated under CSR, and the grey zone represents the upper
and lower pointwise envelopes for L(r) for the 10,000 simulated point patterns.
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(a) (b)

Figure 3: Illustration of (a) a plot of the Pair correlation function for (Banksia attenuata), and
(b) a plot of the Pair correlation function for Banksia menziesii. In both cases a simulation
envelope is included representing 10,000 simulations of a point pattern with complete spatial
randomness (CSR). The dark line on the plot represents the observed value of g(r) for the
data, the red line represents that for the data simulated under CSR, and the grey zone
represents the upper and lower pointwise envelopes for g(r) for the 10,000 simulated point
patterns.



FIGURES 17

(a) (b)

(c)

Figure 4: Plots showing the point pattern for both species considered in this analysis and
the boundaries for the reduced dataset generated after applying border edge correction for an
interaction radius of (a) 1.0m, (b) 2.5m, and (c) 3.5m. The original point pattern is plotted
with dotted lines demarcating the boundaries for the reduced dataset for each radius. The
larger points represent those that lie in the boundary area and are not included in the reduced
dataset, WR. Banksia menziesii is denoted in dark-blue font and Banksia attenuata in red
font.
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Table 1: Posterior means and 95 credible estimates for parameters (σ ∼ U [0, 10]), but provid-
ing the lower and upper 2.5 quantiles. The corresponding model posterior probabilities are
included in the last row of the table.

summary model 1 model 2 model 3 model 4 model 5 model 6 model 7 model 8
β1 mean 0.00092 0.00109 0.00094 0.00105 0.00154 0.00191 0.00155 0.00193

2.5% 0.00064 0.00074 0.00065 0.00072 0.00112 0.00129 0.00107 0.00132
97.5% 0.00123 0.00151 0.00126 0.00143 0.00198 0.00182 0.00204 0.00285

β2 mean 0.00094 0.00094 0.00104 0.00109 0.00153 0.00155 0.00212 0.00209
2.5% 0.00065 0.00068 0.00072 0.00071 0.00107 0.00106 0.00138 0.00137
97.5% 0.00127 0.00124 0.00144 0.00159 0.00205 0.0021 0.00303 0.00291

γ11 mean 0.65656 0.69065 0.52577 0.59067
2.5% 0.29132 0.36314 0.23601 0.21043
97.5% 0.95715 0.97398 0.88642 0.94222

γ22 mean 0.67496 0.64488 0.39273 0.40465
2.5% 0.30095 0.25179 0.13141 0.15673
97.5% 0.98722 0.97269 0.82675 0.77501

γ12 mean 0.02872 0.02935 0.02628 0.02802
2.5% 0.00285 0.00301 0.00277 0.00224
97.5% 0.08559 0.08882 0.07841 0.09033

σ mean 2.76207 2.77485 1.53353 5.73799 4.66448 4.85169 3.9134
2.5% 0.15489 0.04969 0.13592 2.16859 1.69462 1.78708 1.46741
97.5% 8.36174 8.49629 5.52905 9.46288 9.00272 9.13801 8.11552

Model posterior Pr 0.000 0.000 0.000 0.000 0.789 0.099 0.094 0.018
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Table 2: Posterior model probabilities for prior sensitivity analysis (σ ∼ U [0, 1], and σ ∼
U [0, 100]).

Model U [0, 1] U [0, 100]

1 0.012 0.003

2 0.003 0.000

3 0.002 0.000

4 0.017 0.000

5 0.448 0.846

6 0.199 0.069

7 0.208 0.071

8 0.112 0.011
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Table 3: Posterior means and 95 credible estimates for parameters (σ ∼ U [0, 10]), but pro-
viding the lower and upper 2.5 quantiles. The heading for each column in the table indicates
the radius in meters used.

parameter summary 1.0 2.5 3.5

β1 mean 0.0003 0.00193 0.001

2.5% 0.00015 0.00132 0.0008

97.5% 0.0007 0.00029 0.003

β2 mean 0.0002 0.0021 0.0037

2.5% 0.00013 0.00137 0.0004

97.5% 0.0006 0.00029 0.0009

γ11 mean 0.041 0.591 0.269

2.5% 0.0012 0.210 0.111

97.5% 0.985 0.942 0.949

γ22 mean 0.133 0.405 0.126

2.5% 0.0092 0.157 0.044

97.5% 0.991 0.755 0.939

γ12 mean 0.219 0.028 0.126

2.5% 0.026 0.002 0.044

97.5% 0.991 0.09 0.939

σ mean 1.37 3.91 2.25

2.5% 0.052 1.29 0.637

97.5% 5.81 8.92 6.83
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Table 4: Posterior model probabilities for interaction sensitivity analysis (r = 1.0m, r = 2.5m,
and r = 3.5m) where σ ∼ U [0, 10].

Model 1.0m 2.5m 3.5m

1 0.749 0 0.375

2 0.097 0 0.003

3 0.051 0 0.008

4 0.062 0 0.007

5 0.010 0.789 0.221

6 0.013 0.099 0.063

7 0.011 0.094 0.224

8 0.0064 0.018 0.097
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