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Abstract

Water birds are important indicators of ecological change in wetland ecosystems. By
estimating the species richness of waterbirds, the changes in the environmental behaviour
of Bangladesh may be assumed substantially. The leading idea of this paper is to estimate
the number of species of water birds of Bangladesh. Many parametric models are used
for the estimation of species richness now-a-days. We fit four parametric models to the
data of water birds and compared them on the basis of AIC values and standard errors.
Among these models, two-mixed exponential mixed Poisson model has proven to be the
best fit model.
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1. Introduction

Species richness is used to describe the number of species which reside in a certain bio-
sphere or belong to a particular population. Knowing the species richness of a population
helps researchers understand bio-diversity. One of the most remarkable components of global
bio-diversity is the water bird. Their long migrations and tendency to concentrate in large
numbers on particular wetlands make them both visible and charismatic. They are important
indicators of the ecological condition and productivity of wetland ecosystems, and their pres-
ence is widely valued by numerous stake holders including local human populations, tourists,
associated enterprisers, hunters (both sport and subsistence) and research biologists through-
out the world. The presence of water birds also offers many opportunities for using wetlands
sustainably, particularly through eco-tourism. This is particularly important for developing
countries.

Bangladesh is a country with lots of wetlands including rivers and streams, freshwater lakes
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and marshes, haors, baors, beels, water storage reservoirs, fish ponds, flooded cultivated fields
and estuarine systems with extensive mangrove swamps. The haors, baors, beels and jheels
are of fluvial origin and are commonly identified as freshwater wetlands. These freshwater
wetlands occupy four landscape units - flood plains, freshwater marshes, lakes and swamp
forests. For many reasons bio-diversity in these areas is reducing, many species of flora and
fauna are threatened, wetland-based ecosystem is degenerating, and the living conditions
of local people are changing as livelihoods, socioeconomic institutions, and cultural values
are affected (Islam 2010; Shafiqul-Islam 2012). So, it is important and interesting for many
researchers to know how many unseen species of water birds are there. This, practically, can
be treated as an indicator of the environmental change. Application of proper statistical tools
is a requirement for prediction of the total number of species of water birds.

Predicting the number of microbial species in biology is recently a very popular issue (Hong,
Bunge, Jeon, and Epstein 2006). Bunge and Barger (2008) compared among seven paramet-
ric models to get the best fit for the microbial data and found that two-mixed exponential
model best fits the data. They also showed the connections between parametric models for
abundance and incidence data. Interest in the number of species is not restricted to special-
ized fields in biology. Bulmer (1974) estimated the number of species of butterflies and the
light trapped moth using Poisson lognormal model where a method of fitting the compound
Poisson lognormal distribution by maximum likelihood is described. In Keith and Whitemore
(1986) the Poisson- inverse gaussian has been used as a model for species abundance.

The objective of this paper is to estimate the number of classes of the water birds by fitting
parametric models such as Poisson model, exponential mixed Poisson model, two-mixed ex-
ponential mixed Poisson model, lognormal mixed Poisson model and present a comparison
among the models to find the best fitted model.

2. Data at a glance

The data analyzed in this paper is the collection of the water birds of Bangladesh which is the
result of the the Asia Water bird Census: 2002-2004 by Wetlands International. During the
study period, a total of 355,754 birds were sighted and classified into 99 species ranging from
7 species observed once to a maximum frequency of 85,109. A part of the data is presented
in Table 1. It shows that 7 species are observed only once, 4 species are observed twice, 5
species are observed thrice and so on.

Table 1: Frequency Distribution of Observed Number of Species of Water Bird of Bangladesh

Frequency Number of Species Frequency Number of Species

1 7 9 4
2 4 11 1
3 5 13 2
4 5 18 1
5 2 20 2
6 2 22 3
7 2 23 1
8 2 > 23 56
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The cut-off point is a value that separates frequency counts into abundant and rare species.
The number of species with a very high frequency is usually low, that is why, a cut-off point for
the frequency counts is set so that the parametric model be fit for the species with maximum
frequency counts equal to the cut-off point. Often, the choice of the cut-off point is made by
trial and error basis from an arbitrarily chosen set. The cut-off points are also termed as the
tuning parameter. The data at different cut-off points (τ) are analyzed in this paper. Figure 1
shows the number of species against frequencies for cut-offs 9, 25, 84 and 523 for the water
birds data. This illustrates how the distributional behaviour of observed data changes as the
cut-off value increases.

(a) τ =9 (b) τ =25

(c) τ =84 (d) τ =523

Figure 1: Water Bird of Bangladesh
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3. Estimating Species Richness Via Parametric Models

In estimating species richness parametric models are historically being used [see R. A. Fisher
and Williams (1943)] and Bunge and Barger (2008) justified the use of parametric models
for such scenario but argued that no consensus has yet emerged regarding the choice of
parametric distribution for real applications. In a comprehensive study, they considered all
the important models (seven in total) proposed in the literature and discussed the comparative
issues of goodness of fit, model selection, maximal use of the data etc. In this paper, the four
parametric models are chosen in line of the merits and demerits stated by them and suitability
for the water birds data of Bangladesh. Of the seven models they compared, the ones that
were not considered in this paper are given in the following along with the reasons for not
considering them:

1. G-mixed Poisson or negative binomial: Although popular, this model has almost never
been found to fit Bunge and Barger (2008) data sets.

2. Inverse Gaussian: This distribution was found to be little used in practice;

3. Pareto: No previous application of this distribution in the species problem were found
by Bunge and Barger (2008).

Consider a population divided into C classes, where C < ∞ is known. Let, the number
of individuals observed in the given time interval be denoted by n and we consider these n
observed individuals as the sample data. Note that the sample size referred to as n is not
pre-determined or fixed. Assuming each individual can be identified by only one class, all of
the individuals observed can be sorted into their respective classes. Let c be the number of
unique classes that have appeared in the sample. Define Yj to be the number of observed
individuals associated with class j where j = 1, 2, · · · , C. We can describe Yj as a Poisson
random variable with mean j > 0. The probability density function for Yj is

p(yj) = P [Yj = yj ] =
exp(−λj)λ

yj
j

yj !
. (1)

We assume that the Yj are independent for all j. We will call Y = (Y1, Y1, Y2, · · · , YC) the
non-truncated data vector. If Yj = 0, then no individuals from class j were observed in the
sample.

3.1. Ordinary or Unmixed Poisson

Ordinary or unmixed Poisson model, which assumes equal abundances, rarely fits data except
in the case of very coarsely defined taxa, but serves as a useful lower-bound benchmark. We
will now assume that C is unknown. This means when class j is not found in the sample, we
do not know the class exists. The truncated data for each class is Xi, where i = 1, 2, · · · , c and
c is the number of unique classes observed in the sample. We observe a subset, Xi ⊆ Yj such
that Yj > 0. In other words, Xi = Yj if Yj > 0. Denote the truncated (or more specifically,
zero-truncated) data vector as X = (X1, X2, · · · , Xc). So, Xi for i = 1, · · · , c will represent
the observed data. By properties of conditional probability, we have
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P [Xi = xi] = P [Yj = xi|Yj > 0] =
P [Yj = xi, Yj > 0]

P [Yj > 0]
=

P [Yj = xi]

1− P [Yj > 0]
,

where xi = 1, 2, · · · , and we call the distribution of Xi a zero-truncated Poisson distribution.

3.2. Exponential Mixed Poisson

Consider Yj , the number of individuals observed from species j, where j = 1, · · · , C and C is
the total number of species. Let Yj |λj follows Poisson(λj), independently for each j. Now let
λj follows Exponential(θ), where θ is the mean of the distribution, i.e., if p(λj |θ) represents
the probability density for λj , then

p(λj |θ) =
1

θ
exp

(
−λj
θ

)
.

We assume that the λj are independent for all j. The marginal distribution of Yj is given by
a geometric ( 1

1+θ ), that is

p(yj) =

∫
p(yj |λj)p(λj)dλj =

∫ exp(−λj)λ
yj
j

yj !

1

θ
exp

(
−λj
θ

)
=

1

1 + θ

(
θ

1 + θ

)yj
, yj = 0, 1, · · · .

Now for the observed data the zero-truncated geometric distribution is

p[Xi = xi] =
1

1 + θ

(
θ

1 + θ

)xi−1

.

Thus Xi is also a Geometric distribution with probability of success 1
1+θ .

Using the zero-truncated Geometric distribution we find the maximum likelihood estimator
of θ (Bunge and Barger 2008) as θ̂ = x̄− 1, where x̄ = 1

c

∑c
i=1 xi.

Let C0 = C − c denotes the number of unobserved classes. We estimate C0 as

C0 = Cp0(θ̂) = (C0 + c)p0(θ̂) . (2)

From equation 2, we have

Ĉ0 =
cp0(θ̂)

1− p0(θ̂)
.

For the single Exponential Mixed Poisson Model,

Ĉ0 =
c

x̄− 1
.

The asymptotic standard error of Ĉ0 is (Sanathanan 1972)
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SE(Ĉ0) =

 1

Ĉ

(
1− p0(θ)
p0(θ)

− 1

p20(θ)

(
dp(0)

dθ

)T
I(θ)−1

(
dp(0)

dθ

))−1
− 1

2

,

where
Ĉ =

c

1− p0(θ̂)
.

3.3. Two-mixed Exponential Mixed Poisson Model

Mixture of two exponential distribution as a species abundance model was proposed and
applied by Barger (2006). It may also be named as mixture of two geometric. Consider a
three parameter probability density for λj as

p(λj |θ1, θ2, θ3) = θ3f1 + (1− θ3)f2 ,

where f1 = 1
θ1
e
−
λj
θ1 and f2 = 1

θ2
e
−
λj
θ2 are two exponential distributions with parameter θ1 and

θ2 respectively. Thus we get the two-mixed exponential mixed Poisson model

p(λj |θ1θ2θ2) = θ3
1

θ1
e
−
λj
θ1 + (1− θ3)

1

θ2
e
−
λj
θ2 .

The marginal distribution of Yj is, hence given by the weighted sum of the two geometric
probabilities as

P [Yj = yj ] =

∫
p(yj |λj)p(λj |θ1, θ2, θ3)

= θ3

∫
f1p(yj |λj)dλj + (1− θ3)

∫
f2p(yj |λj)dλj

=
θ3

1 + θ1

(
θ1

1 + θ1

)yj
+

1− θ3
1 + θ2

(
θ2

1 + θ2

)
yj . (3)

The zero truncated term of equation (3) is given by

P [Xi = xi] =
P [Xi = xi]

1− P [Xi = 0]
=

θ3
1+θ1

(
θ1

1+θ1

)xi
+ 1−θ3

1+θ2

(
θ2

1+θ2

)
xi

1−
(

θ3
1+θ1

+ 1−θ3
1+θ2

) , xi = 1, 2, · · · .

3.4. Lognormal Mixed Poisson Model

The Poisson lognormal model was proposed by Bulmer (1974) as a model for estimating species
abundance. Like section 3.2, let Yj |λj follows Poisson (λj), independently for each j but λj
follows Lognormal (M,V ), where M is the mean and V is the variance of the distribution,
i.e. if p(λj |M,V ) represents the probability density for λj , then
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p(λj |M,V ) =
1

λj(
√

2πV )−
1
2

exp

(
−(logλj −M)2

2V

)
.

The marginal distribution of Yj is

P (yj) =

∫
p(yj |λj)p(λj |M,V )

=
(2πV )−

1
2

yj !

∫
λ
yj−1
j exp(−λj)exp

(
−(logλj −M)2

2V

)
dλj , yj = 0, 1, 2, · · · . (4)

The probabilities in equation 4 are cumbersome to evaluate even with computers. An ap-
proximation for large values of yj was used by Bulmer (1974) and it is

P (Yj) =
(2πV )−

1
2

yj !
exp

(
−(logλj −M)2

2V

)[
1 +

1

2V yj

(
(lnyj −M)2

V
+ lnyj −M − 1

)]
.

Comparisons with results obtained by numerical integration shows that this approximation
has a relative error less that 10−3 when yj ≥ 10 for values of M and V likely to be encountered
in practice. The distribution can be fitted to observed data by estimating the parameters M
and V , by the method of maximum likelihood. The observed data is considered as a sample
from a zero truncated Poisson lognormal model. In the case of a truncated distribution the
total number of species, including the missing ones can be estimated as

Ĉ =
c

1− P̂0

. (5)

The total number of species is Ĉ +
∑
I[xi > τ ], where τ represents the cut off points. The

approximate sampling variance of the estimate in equation 5 is

Var(Ĉ) =
var(c)

(1− P̂0)2
+

c2

(1− P0)4
var(P̂0) ,

where, var(c) = CP0(1− P0) ≈ cP̂0 and

var(P̂0) = P̂ 2
1 var(M̂) + P̂1(P̂1 − 2P̂2)cov(M̂, V̂ ) + 1

4(P̂1 − 2P̂2)
2var(V̂ ).

4. Analysis

For different value of the tuning parameter (cut-off point), τ , the observed and estimated
number of water bird species along with the standard error and associated AIC values for
ordinary Poisson model (section 3.1) are given in Table 2.
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Table 2: Observed and fitted values of number of water bird species under Poisson model
alongside standard error and AIC

Cutoff Observed Estimated SE AIC

9 33 99.55 0.7737 46.06
11 34 99.46 0.7006 50.74
13 36 99.29 0.5537 67.25
20 39 99.10 0.3207 125.79
25 44 99.02 0.1290 229.98
30 45 99.01 0.1019 262.21
40 47 99.003 0.0578 350.25
50 50 99.0004 0.0198 539.36
100 56 99.00000081 0.0008 1180.94

The ordinary Poisson model assumes equal abundance, so it is not considered as a realistic
model. We can see in Table 2 that the total number of unseen species at cutoff (τ = 9) is
99.55 with a large AIC values whereas there are already 99 species in the data. So there
is barely a chance that any species is unseen, which is almost impossible in reality. As the
cut-off increases the estimate tends to 99, that is the model fails to predict any unseen species
from the data.

The fitted curve of Poisson model at τ = 6 is given in Figure 2 which shows the apparent lack
of fit by this model.

Figure 2: Observed and fitted values of number of water bird species under Poisson model (τ = 6)

Table 3 presents the estimated value of number species of water birds for each cut-off point
using exponential mixed Poisson model along with standard error and AIC. Table 3 exhibits
that the highest estimated total is 109.37 at cut-off point 9 and as the cut-off point increases
the the value decreases to 99.90 for cut-off value 500, That is if the cut-off value is increased
the value will tend to 99, the number of species in the sample,that is there are no unseen
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species. The standard error of the estimates are also showing a decreasing pattern with the
increasing values of τ . As we look at the AIC values, they are much lower than the AIC
values of ordinary Poison, which means Exponential models is giving a better fit comparing to
the Poisson model. Figure 3 exhibits the fitted curve on the observed data for the Exponential
mixed Poisson model at τ = 9.

Table 3: Observed and fitted values of number of water bird species under exponential mixed
Poisson model alongside standard error and AIC

Cutoff Observed Estimated SE AIC

9 33 109.37 4.23 38.17
11 34 109.05 4.11 39.35
13 37 107.78 3.66 47.82
20 39 106.84 3.36 56.46
25 44 105.39 2.89 76.08
30 45 105.10 2.80 80.27
40 47 104.50 2.62 90.25
50 50 103.65 2.36 107.95
100 56 102.28 1.92 151.002
500 73 99.96 0.99 355.07

Figure 3: Observed and fitted values of number of water bird species under single exponential mixed
Poisson model (τ = 9)

The observed and predicted number of water bird species as well as the standard error and
associated AIC values after fitting the two-mixed exponential mixed model on the water bird
data is showed in Table 4.
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Table 4: Observed and fitted values of number of water bird species under two mixed expo-
nential mixed Poisson model alongside standard error and AIC

Cutoff Observed Sp Estimated Total Sp SE AIC

9 33 109.37 4.13 42.17
11 34 109.05 4.15 43.35
13 36 108.32 4.17 48.28
20 39 106.84 3.68 60.46
25 44 105.39 3.10 80.08
30 45 107.83 6.80 83.50
40 47 107.92 5.80 92.46
50 50 107.96 5.06 107.55
100 56 107.79 4.40 141.99
200 62 106.73 3.62 193.05
500 74 105.38 3.01 297.55

Table 4 shows a similar pattern as in single exponential mixed Poisson model. The estimated
value of total number of water bird species is 109.37 at τ = 9 and decreases to 105.38 for
τ = 500. But as we may notice that a sudden decrease at cut-off points 20 to 25. The change
is also noticeable in AIC values. But this change of data pattern is ignored by the Poisson,
exponential mixed Poisson. From the AIC values we can see that, this model has lower AIC
values comparing to the previous two models (Poisson and Exponential mixed Poisson).

The fitted curve of two mixed exponential mixed Poisson at τ = 260 is showed in Figure 4
which shows a good fit.

Figure 4: Observed and fitted values of number of water bird species under two-mixed exponential
mixed Poisson model (τ = 260)

Poisson lognormal model is fitted in the data using the Bulmer‘s approximation ?. Table 5
shows The observed and predicted number of water bird species under lognormal Poisson
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model together with the standard error and associated AIC values for each value of the
tuning parameter value, τ .

Table 5: Observed and fitted values of number of water bird species under lognormal mixed
Poisson model alongside standard error and AIC

Cutoff Observed Sp Estimated Total Sp SE AIC

9 33 101.44 2.12 154.75
11 34 101.52 2.16 163.39
13 36 101.76 2.02 182.20
20 39 102.58 2.57 215.79
25 44 102.97 2.67 269.99
30 45 103.08 2.71 281.68
40 47 103.37 2.81 306.25
50 50 103.84 2.98 345.18
100 56 104.76 3.28 429.08
200 62 106.50 3.91 528.16
210 63 106.70 3.98 544.91
500 74 108.32 4.44 739.52

Table 5 shows that the estimated values increase with the value of cut-offs but the estimated
values increase slowly from 101.44 (τ = 9) to 108.32 (τ = 500). This model has small standard
errors comparing to the previous models (exponential mixed Poisson model and two mixed
exponential mixed Poisson model). But AIC values are highest among the all other models,
proving a possible worse fit for the data.

5. Discussion and Conclusion

Our basic objective is to estimate the number of unseen species of the water birds in Bangladesh
with the best model among the used tools. Our sample contains 99 species of water birds.
Four candidate parametric models have been fitted. Among them the ordinary Poisson model
is not a realistic one since it assumes equal abundance. This model has failed to predict any
unseen species because estimated number of total species ranges from 99.54 to 99. On the
basis of AIC values of the remaining models we may see that the Lognormal mixed Poisson
has the highest AIC value. Now the remaining two models are, single exponential mixed
Poisson model and two mixed exponential mixed Poisson model. The summary of the fittings
with these two models are given in Table 6.

Table 6: Summary findings of the selected best models

Model Name Cutoff Estimated Total Sp Number of unseen species SE AIC

TwoMixedExp 100 107.79 8 4.40 141.99
SingleExp 9 109.4 9 4.2 38.17

For each of the two models, the model with minimum AIC (Akaike Information Criterion) is
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selected. Models combinations for which SE > estimate/2 are eliminated. Another criteria
for the selection of the model is to choose which has utilized the maximum information with
a small AIC. After analyzing the selection characteristics we may say two mixed exponential
mixed Poisson is the best model at τ = 100, because of the maximum usage of the information
and covering the right tail of the data. The estimated number of species is 107.79. That is
there may be eight more species of water birds that are still unseen.
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