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Abstract

Algae biomass in California watersheds are impacted by several covariates including
atmospheric nitrogen, watershed nutrients, land-use variables and physical-habitat vari-
ables. However, with several different agencies collecting and reporting data on both
biomass response variables and subsets of all potential predictors, the result is several
variables contained within multiple datasets, each compiled with data disjoint both in
space and time from the other datasets. In this paper, the authors discuss a spatial
statistical technique for forcasting values for each response and predictor over a shared
spatial support and then using weighted standardized regression to identify which predic-
tive variables are most important in explaining variability in algae biomass levels. Results
will indicate that algae biomass levels are consistently correlated with the following: N03,
N0x, Total Nitrogen and some land-use variables, while physical-habitat variables and
atmospheric nitrogen are less successful predictors of algae biomass population density.
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1. Introduction

California’s watershed constituents, namely, rivers and streams, are a critical natural source
to sustain indigenous aquatic and terrestrial natural species. Pollution of streams caused
by urbanization has resulted in increased loading of contaminants to streams not only from
direct infusion into water bodies but also by wet and dry atmospheric deposition. The State of
California is proceeding with development of specific watershed management goals to define
nutrient water quality objectives that may ultimately become environmental policies and
regulations. A key element to be considered in development of these objectives (and eventual
sound policies) is the level of nitrogen from natural vs. anthropogenic sources and their effect
on biomass, which is characterized by three response variables of interest. The purpose of this
project is to provide critically needed insight into the problem of nitrogen pollution, not only
so that regulators can set appropriate limits, but also so that ’dischargers,’ (the anthropogenic
sources) can understand to what extent they affect, and can therefore control, undesirable
levels of nitrogen contamination.

There is a general lack of understanding regarding natural vs. anthropogenically-influenced
rates of atmospheric nitrogen deposition, due to the difficulty in separating the contribu-
tion of each variables to the overall level of nitrogen deposition. To further complicate this
problem is the fact that several variables of interest are maintained by separate agencies
and are recorded at potentially disjoint spatial locations. With several potential confounding
variables to consider in addition to atmospheric nitrogen, such as land-use variables, physical-
habitat variables and nutrient variables, it is difficult using traditional statistical techniques
for estimating which variables have the largest impacts on algae biomass within a watershed.

Our proposed approach to the problem is to employ a statistical protocol for identifying which
of several potential predictors, contained within spatially-disjoint geo-statistical datasets,
most impacts algae biomass. Our proposed methodology combines protocols for addressing
incomplete data, for spatial kernel smoothing of several datasets over a shared discretized or
’pixelated,’ spatial support, for Kriging smoothed values, for determining the weight at each
pixel over our support and finally an adaptation to weighted least squares regression with
standardized coefficients of all the predicted variables to algae biomass response variables on
a per pixel basis.

2. Data

Three bodies of data were provided by the Southern California Coastal Water Research
Project (SCCWRP) . The first, henceforth the SCCWRP data, includes data from 1264 sites
over nine ecological regions (Central Lahotan, Central Valley, Coastal Chapparal, Deserts
Modoc, Interior Chaparral, North Coast, South Coast Mountain, South Coast Xeric and
West Sierra) and among the 194 variables included for each site, contains measurements of
nutrient concentrations, algal biomass and site-specific land-use and physical-habitat factors.
This data is temporally supported from June 5, 2007 through May 31, 2012. Each observation
contains aggregate measures of nutrient concentrations and algae biomass over time as well
as values for the site-specific land-use and physical-habitat factors as were measured at the
end of the temporal domain. Missing data frequently appeared throughout various fields of
this data set.

The second set of data was constructed by the Community Air Quality Model (CMAQ). This
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dataset contained 6,012 temporally summarized measures of wet, dry and total atmospheric
nitrogen deposits. Each observation from this dataset is an aggregate summary of wet, dry
and total atmospheric nitrogen from 2002-2006 as well as from 2004-2008.

The third and final dataset was collected by the National Atmospheric Deposition program
(NADP) and has the same spatial support as the CMAQ data. Contained within the NADP
data is 6,012 temporally-aggregate summaries of wet, dry and total atmospheric nitrogen
deposits from 2002-2006, 2004-2008 and from 2007-2011. Both the CMAQ and NADP datasets
are complete datasets. The NADP dataset is limited in that it potential does not estimate
deposition in high-elevation areas well (Latysh and Weatherbee 2012).

It is important to note that the only time period in which all three datasets are temporally
supported is from June 2007 through December 2008. However, the temporal resolution of
our data has made isolating this particular period within the data impossible. Our conclu-
sions will ultimately be somewhat restricted by the fact that we are using predictor variables
from the SCCWRP data (summarized over 2007-2011) to estimate our response variables
from the CMAQ and NADP data (summarized from 2004-2008). We are encouraged by re-
searchers at SCCWRP that maintain that nutrient concentrations, site-specific land-use and
physical-habitat factors may change significantly over very long periods of time but that using
summarized data from 2007-2011 as a proxy for the same information from 2004-2008 is not
overly irresponsible.

Each of the 1264 rows of measurements in the SCCWRP database had measurements on 174
variables. This set of data was initially assessed to propose which variables to delete and
which to keep in an analysis dataset. Missing data accounted for 20.5% (n=50,253) of the
245,895 data values, and 49 of the 194 variables contained missing data on 30% or more of
the observed values. Twenty-one scaled variables contained truncated data. Considerations
for multi-collinearity and discussions with our ecology experts at SCCWRP resulted in the
deletion of a total of 146 variables, resulting in a final set of k=48 potential predictors for the
three potential responses from the SCCWRP database to be used for analysis. Appendix 1
provides a summary of variables retained for analysis.

Imputation using the missForest package in R was implemented to address the missing data
problems inherent within the SCCWRP dataset. This iterative imputation method uses a
random forest, or statistical algorithm to cluster points of data in functional groups, by fitting
the observed data to predict the missing data until the algorithm has reached a predetermined
stopping criterion or maximum number of iterations (Stekhoven and Buehlmann 2012).

3. Methods

The goal of this process is to identify which among our 48-predictors are having the largest
impact/correlation with algae biomass response variables. The working assumption for this
procedure is that the geo-statistical variables can be modeled as follows:

Z(s) = µ(s) + f(γ(h)) (1)

where µ(s) is spatially deterministic and in-homogenous and γ(h) is the semi-variogram of the
data value once the deterministic aspect has been removed (i.e. semi-variogram for Z(s) −
µ(s)). The underlying assumption here is that once the deterministic aspect of the data has
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been removed, the resulting data reflects an intrinsically stationary stochastic process from
which we can forecast to new locations using ordinary Kriging with a parametric spherical
variogram (Matheron 1963, Cressie 1990, Cressie 1993).

We begin by ’pixelating,’ our data over a shared spatial support. This involves making ad
hoc choice of a kernel K(H) for spatial kernel smoothing over a region of California that is
supported by all three datasets and an ad hoc choice for the number of pixels to regress over.
Literature will support that often the choice of kernel makes little difference in results, but that
choice of bandwidth is critical to avoid over/under smoothing, see for example Helmstetter
et al. (2006).

Our ad hoc choice of spatial kernel is the symmetric Gaussian,

K(H, s1, s2) =
1

2πH2
e

∆(s1,s2)2

2H2 (2)

where H is a symmetric bandwidth selected using cross validated maximum likelihood esti-
mation, see Helmstetter et al. (2006). Our ad hoc choice for the size and number of pixels
to disjointly cover the region of California over which we have reasonable data coverage was
3,735 (.137 by .063, Longitude by Latitude) discretized pixels.

At any given location s0, kernel smoothed estimates µ̂(s0) were computed based on our kernel
and the spatial locations, s1, s2, ..., sn of the observed geo-statistical data points Z(s1), Z(s2)..., Z(sn)
as follows:

µ̂(s0) =

∑n
i=1 Z(si)K(H, si, s0)∑n

i=1K(H, si, s0)
(3)

Plots or ’Heat maps,’ of the kernel regressed predictors and responses are easy to construct
at this point and serve as helpful tools in verifying which of the predictors are spatially most
correlated with each of the response variables. Once the deterministic portion of our model
µ̂(s0) is assessed at location s0, values for Ẑ(s0) − µ̂(s0) can be imputed using a Kriging
procedure. The resulting sum of the deterministic and stochastic forecasts at s0 is Ẑ(s0).

At any given location s0, kernel density estimates were computed as follows:

f̂(s0) =

n∑
i=1

K(H, si, s0) (4)

While a kernel density is not a meaningful tool for geo-statistical data as the locations at
which data collected are not random, a kernel density in this instance is helpful in iden-
tifying how much data support there is local to each pixel. At a given pixel location, s0,
let us consider the following collections of spatially kernel smoothed and Kriged response
values: (Ẑy1∗(s0), Ẑy2∗(s0), Ẑy3∗(s0)) and spatially kernel smoothed and Kriged predictors
(Ẑx1∗(s0), ..., Ẑxk∗(s0)). Note that x∗j is predictor xj in standardized form.

In addition to kernel smoothed and Kriged responses and predictors at each pixel s0, kernel
density estimates for standardized responses and standardized predictors were computed at
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each pixel: ˆfy∗1 (s0), ˆfy∗2 (s0), ˆfy∗3 (s0), ˆfx∗
1
(s0)... ˆfx∗

k
(s0). Weights w(s) for weighted least squares

regression at each pixel were computed as follows:

w(s0) =
ˆfx∗
i
(s0) + ˆfx∗

j
(s0)

max( ˆfx∗
i
) +max( ˆfx∗

j
)

(5)

where x∗i and x∗j are any variable from the SCCWRP and NADP/CMAQ databases respec-
tively.

Using the kernel regressed values for each of the three response variables, the kernel regressed
values for all of the potential standardized predictive variables and the weights, three stan-
dardized weighted least squares regression models were proposed. The impact of each of the
predictors on the response was determined by ranking the standardized coefficients of the
model.

4. Results

Figure 1 contains heat maps of the three algal biomass response variables, PCTMAP, CHLA
and AFDM. Of interest is the effect of atmospheric nitrogen deposition as was measured by
the following three predictor variables, CMAQ Interpolated Wet Nitrogen from 2004-2008,
CMAQ Interpolated Dry Nitrogen from 2004-2008 and CMAQ Interpolated Total Nitrogen
from 2004-2008. Figure 2 contains heat maps of the NO3 and NOx from 2007-2011, two of
the most effective predictors of the three responses while Figure 3 contains heat maps of the
CMAQ Interpolated Nitrogen variables from 2004-2008.

Based on comparison of standardized slopes for our final weighted least squares regression
models, NO3, NOx and Total Nitrogen were amongst the most impacting predictors in all
three models. Other high impact predictors included land use variables like road density and
percent land use catchment. Notice how spatially similar NO3 and NOx are with the three
algal biomass response variables. It is not surprising that they are the dominant terms in the
standardized regression models.

5. Discussion

While the results of this paper merely verify what ecologists have long known, namely that
nitrogen based nutrients like NH4, NH3, NH2, NOx and Total Nitrogen are algal biomass
population limiting nutrients, the weakly correlated relationship between atmospheric nitro-
gen and algal biomass is somewhat surprising. A potential explanation for this might simply
be that atmospheric nitrogen from 2004-2008 contributes to nitrogen levels in local streams
and lakes which are represented in the SCCWRP watershed nutrient data. The result being
that watershed nitrogen levels are population density limiting variables and have a direct
impact on algae biomass while atmospheric nitrogen has more of an indirect relationship with
algae biomass.

This research implemented a new descriptive methodology for comparison of geo-statistical
variables with disjoint spatial supports. It should be emphasized that even after Kriging
there are still pockets of spatial non-stationarity which can severely deflate standard errors
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for regression coefficients. Any attempt at prediction or statistical inference is ill-advised.
However, descriptively, standardized regression coefficients of kernel smoothed and Kriged
geo-statistical variables are a valuable new tool in identifying important predictors of responses
for data with spatially disjoint supports.
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Figure 1: Results of spatial kernel regression of three algae biomass response variables based
on 1,152 observations.
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Figure 2: Results of spatial kernel regression of NO3 and NOx based on 1,152 observations.
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Figure 3: Results of spatial kernel smoothing of CMAQ interpolated nitrogen based on 6,022
observations.
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Appendix 1: Variable Descriptions

Description Short Hand Expression
Regression
Coefficient

Ash-free dry mass corresponding to organic
content in the sample

AFDM gm2 y1

Percent agricultural land use in catchment
within 1-km radius from sampling site

Ag 2000 1K x1

Percent agricultural land use in catchment
within 5-km radius from sampling site

Ag 2000 5K x2

Percent agricultural land use in catchment Ag 2000 WS x3
Alkalinity Alkalinity mgL x4
Chlorophyll-a (photosynthesis pigment) chla mgm2 y2
Chloride Chloride mgL x5
Percent land use in catchment within 1-km
radius from sampling site

CODE 21 2000 1K x6

Percent land use in catchment within 5-km
radius from sampling site

CODE 21 2000 5K x7

Percent land use in catchment CODE 21 2000 WS x8
Conductivity Conductivity uScm x9
CMAQ Interpolated Dry Nitrogen 2004-2008 CMDN0408kghayr x10
CMAQ Interpolated Wet Nitrogen 2004-2008 CMDW0408kghayr x11
Flow Discharge (Q) (metric) m3/s FL Q M x12
Inverse distance (km) to nearest upstream dam
in catchment

InvDamDist x13

Index of riparian disturbance, observational
data that tallies all the different human impact

MaxOfW1 HALL x14

Mines within a 5-km radius MINES 5K x15
Mines within the watershed radius MINES WS x16
mean monthly solar radiation (same month) Mmsolar sameMonth x17
NADP Interpolated Wet Nitrogen 2002-2010 NWN0210kghayr x18
NADP Interpolated Wet Nitrogen 2007-2011 NWN0711kghayr x19
Ammonium NH4 mgL x20
Nitrogen + Oxygen2 N02 x21
Nitrogen + Oxygen3 N03 x22
Nitrate + Nitrite NOx mgL x23
paved intersections within a 1-km radius PAVED INT 1K x24
paved intersections within a 5-km radius PAVED INT 5K x25
paved intersections within a watershed radius PAVED INT WS x26
Percent cover of coarse particulate organic
matter in streambed

PCT CPOM x27

Percent cover in fine substrata in streambed PCT FN x28
Macroalgal percent cover PCT MAP y3
Percent that was not sediment PCT NOSED x29
Percent sand + fines in streambed PCT SAFN x30
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Percent sediment PCT SEDIM x31
Road density within a 1-km radius RoadDens 1K x32
Road density within a 5-km radius RoadDens 5K x33
Road density within the Watershed radius RoadDens WS x34
Slope Slope 0 x35
Mean of the slope within a 1-km radius slopePercMean 1K x36
Mean of the slope within a 5-km radius slopePercMean 5K x37
Mean of the slope within the watershed radius slopePercMean ws x38
Temperature Temperature C x39
Total nitrogen TN mgL CALC x40
Total phosphorus TP mgL x41
Percent urban land use in catchment within a
1-km radius from sampling site

URBAN 2000 1K x42

Percent urban land use in catchment within a
5-km radius from sampling site

URBAN 2000 5K x43

Percent urban land use in catchment URBAN 2000 WS x44
Percent canopy cover XCDENMID x45
Slope XSLOPE x46
Depth of stream XWDEPTH x47
Width by depth XwidthXdepth x48
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Appendix 2: Regression Coefficients

Std. Predictor \ Std. Response Ẑy1(s0) Ẑy2(s0) Ẑy3(s0)

Ẑx1∗(s0) 0.11 0.04 -0.03

Ẑx2∗(s0) -0.23 -0.06 0.12

Ẑx3∗(s0) 0.01 -0.10 -0.65

Ẑx4∗(s0) 0.10 -0.18 0.20

Ẑx5∗(s0) -0.21 -0.04 -0.39

Ẑx6∗(s0) -0.21 -0.01 -0.04

Ẑx7∗(s0) 0.68 -0.08 -0.19

Ẑx8∗(s0) 0.46 0.67 0.38

Ẑx9∗(s0) 0.42 0.49 1.10

Ẑx10∗(s0) 0.07 0.05 -0.01

Ẑx11∗(s0) 0.00 0.01 0.05

Ẑx12∗(s0) -0.09 -0.17 0.21

Ẑx13∗(s0) 0.20 0.13 0.00

Ẑx14∗(s0) 0.26 -0.20 -0.44

Ẑx15∗(s0) 0.04 -0.06 0.11

Ẑx16∗(s0) -0.09 0.08 0.10

Ẑx17∗(s0) -0.09 0.02 -0.07

Ẑx18∗(s0) 0.00 0.03 0.10

Ẑx19∗(s0) -0.01 -0.06 -0.13

Ẑx20∗(s0) -0.08 -0.39 -0.04

Ẑx21∗(s0) -0.07 0.17 -0.09

Ẑx22∗(s0) -1.05 -0.64 -0.39

Ẑx23∗(s0) 1.04 0.24 1.27

Ẑx24∗(s0) -0.32 -0.57 0.04

Ẑx25∗(s0) -0.16 0.05 -0.38

Ẑx26∗(s0) -0.08 0.01 -0.23

Ẑx27∗(s0) 0.05 -0.08 0.30

Ẑx28∗(s0) 0.17 -0.02 0.13

Ẑx29∗(s0) 0.36 0.26 0.02

Ẑx30∗(s0) -0.18 -0.03 -0.21

Ẑx31∗(s0) 0.00 -0.06 -0.02

Ẑx32∗(s0) -0.72 0.11 0.14

Ẑx33∗(s0) -0.62 -1.00 -0.22

Ẑx34∗(s0) 0.58 0.45 0.12

Ẑx35∗(s0) 0.06 0.10 0.02

Ẑx36∗(s0) -0.02 0.04 -0.02

Ẑx37∗(s0) 0.17 0.13 -0.32

Ẑx38∗(s0) -0.01 0.11 0.45

Ẑx39∗(s0) 0.22 0.22 0.23

Ẑx40∗(s0) 0.65 0.65 -1.25
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Ẑx41∗(s0) -0.11 0.15 0.40

Ẑx42∗(s0) 0.66 0.57 0.70

Ẑx43∗(s0) -0.29 -0.48 -0.46

Ẑx44∗(s0) -0.13 0.40 0.43

Ẑx45∗(s0) -0.04 -0.06 -0.07

Ẑx46∗(s0) 0.14 -0.18 -0.30

Ẑx47∗(s0) -0.06 -0.30 0.19

Ẑx48∗(s0) 0.06 0.29 -0.32
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