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Abstract

A crucial concern of toxicologists is to determine an acceptable exposure level(s) to
a hazardous substance(s). Often lab experiments produce data featuring multiple haz-
ards and multiple outcome measures. The current practice evaluates each hazard and
outcome combination separately, which leads to multiple statistical tests that suffer from
inflated Type I error rates. This paper introduces a Bayesian model-based approach for
analyzing data of similar nature. This approach is dimension-preserving in that it permits
simultaneous quantification of an acceptable exposure level among multiple hazards. Fur-
thermore, we introduce the concept of significance probabilities to assess the importance
of the outcomes in determining an acceptable exposure level. The proposed methodol-
ogy is motivated and illustrated through analyzing the dataset from a rodent study of
pesticides on neurotoxicity conducted by Moser et al. (2005).

Keywords: environmental health; Bayesian modeling and analysis; Markov chain Monte Carlo;
simultaneous inference.

1. Introduction

Toxicologists are concerned with determining and reducing the risk of an adverse effect on
an organism that is exposed to potentially toxic materials. In laboratory settings toxicolo-
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gists consider the effect of a single toxic substance (stressor) on a single outcome (endpoint)
via rodent studies, even though they may be making measurements on multiple endpoints.
This practice is clearly a poor use of resources as the collected data are not fully utilized.
In fact, an exposure to the stressor of interest often affects multiple endpoints, all of which
could potentially signal an adverse effect. Thus determining a single acceptable dosage of an
exposure can prove difficult. As an illustration, consider the work of Moser et al. (2005), who
attempted to determine the effect of exposures to pesticides on neurotoxicity using laboratory
experiments with rats. The problem is that neurotoxicity is ill-defined as it can be evidenced
by several distinct endpoints. For rats, neurotoxicity can be measured in terms of endpoints
such as blood cholinesterase, brain cholinesterase, motor activity, and tail pinch response, and
a decrease in any measurement is considered adverse. The issue can be further complicated in
more general settings by the fact that organisms are typically exposed to multiple stressors in
a form of a mixture of chemicals/compounds or even under diverse environmental conditions
(Monosson 2005). For example, commercial pesticides often come as a combination of several
pesticides or different pesticides may be applied at different stages of the plant growth, result-
ing in an application of a combination of pesticides. In either case, any organism consuming
the plant will be exposed to more than a single pesticide.

The US Environmental Protection Agency (USEPA) is required to establish guidelines for
exposures to stressors. These guidelines lead to the establishment of the Point Of Departure
(POD), which is the level of an exposure at which an adverse effect is detected. There are two
common methods of determining POD’s: the No Observable Adverse Effect Level (NOAEL)
and the Benchmark Dose (BMD). The NOAEL approach makes the statistical comparison of
the mean response of a variety of dose groups against that of the control group. Specifically,
the NOAEL is considered to be the highest dose level for which the mean response of the
dose groups is not significantly different from the mean of the control group. One flaw of
NOAEL is that the responses may be highly sensitive to the stressors, and hence any dose
given could result in an observable adverse effect. Consequently, from such experiments one
may end up concluding that no level of exposure is tolerable (e.g., Crump 1984; Leisenring
and Ryan 1992; Slob 1999). Follow up experiments could be conducted at lower and lower
dose levels to determine the NOAEL, but each successive experiment would result in an even
lower NOAEL (Crump 2002; Scholze and Kortenkamp 2007). Hence the main deficiency of
NOAEL is that it may not be easily found for the stressors of interest.

1.1. The Benchmark Dose Approach

The use of BMD was developed due to the aforementioned issue with NOAEL. Instead of
looking directly at differences from the control, BMD, typically, fits a monotone invertible
function f to explain the relationship between the dose of a stressor and the measured endpoint
(Crump 1984). To use BMD one first specifies the value of the response that is considered
unacceptably adverse, known as the Benchmark Response (BMR). For simplicity the BMR is
typically indexed by an η% change from the control group, denoted by BMRη. For example,
suppose one deems a 10% change from the control group to be the acceptable upper bound
for an adverse effect; then for a particular endpoint the BMR10 is the value of that endpoint
which corresponds to the 10% change. Once BMRη is specified we use f to find the dosage
that corresponds to this value of BMRη, which is known as the Benchmark Dose, BMDη.
Considering the uncertainty associated with the estimated parameters in f and the unavoid-
able experimental errors, a C% confidence interval about BMDη can be further calculated.
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The lower bound of this confidence interval is the Benchmark Dose Lower bound, BMDLη,
and it is the greatest dosage at which one is C% confident that an unacceptable adverse effect
on the endpoint under consideration will not occur. A common POD adopted in practice is
BMDLη. In fact, the USEPA accepts the replacement of NOAEL with BMD whenever appro-
priate quantitative data are available (USEPA 1995, 2002). Yu and Catalano (2008) assessed
BMD’s behavior relative to BMR and recommended to use higher BMR (e.g., 5% and 10%)
given the variability of the BMD distribution due to background noise. A good overview of
the BMD methodology and its application is given by Piegorsch and Bailer (2005).

For a single response variable (endpoint), yi, resulting from a single predictor (stressor), xi,
one can determine the BMD as follows. One first specifies the acceptable percentage change
from the control/placebo, η, and then translates that into, BMRη, the response value that
is considered the maximum acceptable level of an adverse effect. For instance, if an adverse
effect of no more than 5% is claimed acceptable, then we set BMRη = 5%; if the response
scale is from 0 to 100 and higher values correspond to a more adverse effect, then set η = 5.
Once η is determined, a link function that relates the measurement on the endpoint yi and
the dose levels of the stressor xi can be established

yi = f(β0 + β1xi), (1)

where β denotes the vector of governing parameters. One then solves for BMDη = x∗ through

f−1(1− η/100) = β0 + β1x
∗. (2)

To account for parameter uncertainty, one can determine a BMDL on x∗ by constructing a
C% confidence interval for x∗ (USEPA 1995). The parameter vector β, the standard errors
for β, and x∗ can be estimated via a quasi-Newton iterative algorithm (Proc NLMIXED in
SAS), profile likelihood (Pawitan 2001), or Markov Chain Monte Carlo methods based on
Bayesian analysis (Tao et al. 2004).

The aforementioned approach works for a single pair of stressor and endpoint only. However,
in practice multiple endpoints are often considered for risk assessment (Ryan 1992; D. W. Gay-
lor et al. 1998). Extending BMD to situations that concern multiple endpoints is nontrivial,
and it poses challenges for data analysis and interpretation due to the non-comparability as-
pect of BMDs for different stressors (Englehardt 2004). For a single stressor risk assessment,
the analysis should focus on the most sensitive endpoint. Establishing the most sensitive
endpoint typically requires the use of multiple statistical tests that result in inflated Type I
error rates. Correcting methods such as Bonferroni correction if adopted typically reduce the
power of the tests to detect the effect of interest. Furthermore, such results lack an overall
interpretation on the effect of the stressor under consideration.

To avoid solely considering the most sensitive endpoint, several approaches have been pro-
posed such as using multiple endpoints in the same model or combining multiple endpoints
into a single composite endpoint. Sammel et al. (1997) and Regan and Catalano (1999b)
used a latent-variable model for mixed discrete and continuous correlated endpoints. Cof-
fey et al. (2007) proposed an overall score based on a desirability function for analyzing
multiple-endpoint data. The overall score is an outcome of a dimension reduction approach
that converts the multiple-endpoint dataset into a single composite endpoint dataset. Re-
gan and Catalano (1999a) evaluated the developmental effects of Ethylene Glycol (EG) on
fetus malformation and fetal weight by considering separate BMRs for the two endpoints,
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and they employed generalized estimating equations to incorporate correlations between the
endpoints. Yu and Catalano (2005) developed a likelihood model that allows separate dose-
response models for all endpoints while accounting for the bivariate correlation to obtain an
overall characterization of the risk associated with an exposure.

Several Bayesian approaches have been proposed for dealing with multiple-endpoint exper-
iments. Choi et al. (2010) and Faes et al. (2004) used Bayesian hierarchical models for
analyzing multiple-endpoint data that result from the exposure to Perchlorate and data from
the exposure to EG on mice, respectively. Faes et al. (2004) proposed a two-stage Bayesian
hierarchical structure in which the first-stage models the probability that a fetus is non-viable
and the second stage models the probability that a survivor fetus has a malformation. Choi
et al. (2010) and Faes et al. (2004), however, only considered models for exposures to a single
chemical/stressor and each endpoint was modeled separately. Geys et al. (1999) proposed
a pseudolikelihood approach for modeling multivariate endpoints. Coull et al. (2003) used
Bayesian hierarchical models to synthesize information for several endpoints across several
studies. Li et al. (2008) used parametric and semiparametric logistic methods in a Bayesian
framework; however, they only modeled for multi-binary data. Budtz-Jørgensen (2007) con-
sidered using structural equation models to determine the BMD for multiple endpoints and
multiple stressors. Our formulation is similar to Dunson (2000), who considered combining
multiple endpoints via random effects. We combine BMD with the random effects under a
Bayesian framework to determine which dosages and combination of dosages are tolerable.

The remainder of this paper is organized as follows. Section 2 presents the organophosphate
pesticide (OP) dataset collected by Moser et al. (2005), which is used to demonstrate the
methodology we propose. Traditional BMD analysis is conducted assuming that the stressors
are independent of each other. Section 3 develops the modeling approach and establishes
the definitions of BenchMark Dose Tolerable Region and BenchMark Dose Tolerable Set,
respectively, for stressors and endpoints. Section 4 demonstrates the proposed method by
analyzing the OP dataset. Section 5 concludes with a discussion and suggests potential
enhancements to the proposed method.

2. The Organophosphate Pesticide (OP) Dataset

Moser et al. (2005) investigated the neurotoxic effects of organophosphates pesticides (OP)
which are commonly used in agriculture. OP pesticides are suspected of producing neurotoxic
effects, however, the outcome of neurotoxicity has been ill-defined and is often measured as a
combination of several endpoints. Moser et al. (2005) considered the following neurotoxicity
endpoints: Brain cholinesterase (BrainCHE) (y1), Blood cholinesterase (BloodCHE) (y2),
motor activity (y3), and tail pinch (y4). These endpoints were considered in conjunction
with exposures to the following pesticides (i.e., stressors): acephate (ACE), diazinon (DIA),
chlorpyriphos (CPF), dimethoate (DTO) and malathion (MAL). The pesticides were given in
ranging doses to a total of 349 rats. Specifically, ACE doses ranged from 0 to 120 (mg/kg),
DIA doses ranged from 0 to 250 (mg/kg), DTO doses ranged from 0 to 75 (mg/kg) and
MAL doses ranged from 0 to 500 (mg/kg). Each of the pesticides was applied when all
other pesticides had dose 0; in addition, a variety of pesticide mixtures was also given. The
stressors were given orally to Long/Evans rats and the endpoints above were measured on
each rat. Since the measurement on BrainCHE required the animal be sacrificed, only one
dose combination and one set of endpoint measurements was available for each rat. See Moser
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et al. (2005) for details of the data collection process. One interesting complexity with this
dataset is that tail pinch is a binomial outcome as it counts the total number of positive
reactions to a pre-specified number of pinches. This complexity does not allow modeling the
data as a multivariate normal random vector. Due to differences in tail pinch protocols across
different experimental sites the number of trials associated with tail pinch varied and values
of 7, 8, 12 or 16 were observed.

Analysis is conducted for each stressor and endpoint combination separately and the BMDL50

for all stressors are calculated using a method consistent with that used by Moser et al. (2005).
For the continuous endpoints, motor activity, BrainCHE and BloodCHE, the following dose-
response model is used to describe the relationship between a stressor and a given endpoint:

yji ∼ N
(
eβ0j+xiβ1j , σ2

)
, j = 1, 2, 3,

where the index i denotes the ith subject, β0j and β1j are the regression parameters and xi is
the dose of the stressor given to subject i. As mentioned above, the tail pinch endpoint is not
continuous as it arose from a binomial experiment in which the number of positive reactions
to a set of ni tail pinches was counted. Recall that the value of ni was not consistent across
all experimental sites. Therefore, we adopt the following model for this endpoint:

y4i ∼ Binom
(
ni,

1

1 + exp(β04 + xiβ14)

)
.

Table 1 shows the resulting BMDL50 for all endpoint-stressor combinations.

Table 1: BMDL50 resulting from an independent analysis of each endpoint considered sepa-
rately from exposures to ACE, DIA, CPF, DTO and MAL, measured in mg/kg.

Endpoint ACE DIA CPF DTO MAL

BrainChE 21.73 111.51 36.77 23.76 500
BloodChE 23.79 7.92 1.85 17.61 500
Motor activity 24.33 131.23 32.45 51.57 500
Tail pinch 56.44 160.44 37.73 48.23 500

min(Endpointj) 21.73 7.92 1.85 17.61 500

The goal of the analysis is not only to determine the BMDL50 for each endpoint-stressor
combination but also the BMDL50 for a stressor across all endpoints. Notice from Table 1
that for stressor ACE the BMDL50 associated with BrainChE is 21.73 mg/kg. This is the
smallest BMDL50 for ACE across all endpoints. Hence any exposure to ACE that is below
this level would be deemed tolerable across all endpoints. Since BrainChE is the endpoint
that defines the BMDL50 across all endpoints we say that it is the most sensitive endpoint
for ACE. Similarly for stressor DIA, the endpoint BloodChE is most sensitive. Notice that
motor activity and tail pinch do not contribute to defining the BMDL50 for any of the stressors.
Therefore one would conclude from Table 1 that BrainChE and BloodChE are considered as
the most sensitive endpoints among the four as they determine the BMDL50 for all stressors.
While the analysis above gives very important information it ignores any additive effects from
combining various stressors and it fails to determine whether a combination of two stressors
will lead to an unacceptable adverse effect.
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In the next section we propose a novel unified Bayesian model-based approach to evaluating
dose-response relationships among multiple endpoints that result from exposures to multiple
stressors. This approach will equip toxicology researchers with a powerful systematic tool to
find a dosage region (in the stressor space) that controls for an acceptable level analogous to
the BMD. Furthermore, we define the notions of hypersensitive, cosensitive and hyposensitive
which reflect the importance of each endpoint in defining the tolerable region of dosages. In
addition, we illustrate how to quantify the importance of an endpoint. The aforementioned
issues are of vital importance to toxicology researchers; however, to the best of our knowl-
edge, none of these have been addressed by the existing methods. We hope the proposed
methodology will help fill the research gap.

3. The Bayesian Model-Based Approach

In this section we present in detail our Bayesian model-based approach to evaluating dose-
response relationships. The detailed steps are provided and a general algorithm is presented
at the end of this section.

Suppose that we are interested in learning the dose-response relationships among J endpoints
and K stressors through an experiment conducted on n subjects. Let yij be the response
of the ith subject on the jth endpoint. For the ith subject the J endpoint measurements
can be put into the J × 1 vector Yi = (yi1, yi2, ..., yiJ)>, i = 1, 2, . . . , n. The K × 1 vector
Xi = (xi1, xi2, ..., xiK)> gives doses on the K stressors applied to the ith subject. The
relationships between the K doses and the J endpoints can be described by the J × 1 vector
of functions f = (f1, f2, ..., fJ)>, where the fj ’s are assumed to be monotone and invertible.
Let βj be the K × 1 vector of parameters that corresponds to the jth endpoint and let
β = (β1,β2, . . . ,βJ). We model the response of the ith subject on the J endpoints due to an
exposure to the K doses as

Yi = f(X>i β) =


yi1
yi2
...
yiJ

 =


f1(X

>
i β1 + ri)

f2(X
>
i β2 + ri)

...
fJ(X>i βJ + ri)

 , i = 1, 2, ..., n. (3)

This formulation allows each endpoint to have its own model while using a subject specific
random effect term ri to capture the within subject effect across endpoints. For consistency,
in formulation (3) all the K stressors in vector Xi are included in each of the J endpoint
models. For a given BMRη = (η1, η2, ..., ηJ)> the invertibility of the fj ’s permits the BMD
or the tolerable region, T , to be determined for all endpoints simultaneously by solving the
following system of inequalities,

f−1(η) =


f−11

(
(1− η1/100)f̂1(0)

)
f−12

(
(1− η2/100)f̂2(0)

)
...

f−1J

(
(1− ηJ/100)f̂J(0)

)

 ≤


β>1
β>2
...

β>J

 · X∗ , X∗ ≥ 0, (4)

where f̂j(0) is the estimated function value on endpoint j when zero dosage is given for
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all stressors. Notice that any combination of dosage of stressors, X∗, that satisfies (4) is
considered tolerable with respect to the given BMRη.

3.1. Prior and Posterior Distributions

In this subsection we give the likelihood for the data, the prior distributions associated with
the parameters, and details on how to obtain samples from the posterior distribution. Due
to the possible complexity of handling both continuous and discrete endpoints, care should
be exercised in constructing the likelihood as a multivariate normal distribution is no longer
appropriate. Let gj(yij |fj(X>i βj+ri), γj) be the probability density for the response measure-
ment of the ith subject on the jth endpoint, j = 1, 2, ..., J ; the γjs are additional parameters
that may be required to define the distribution. Given the βj ’s and γj ’s the endpoints are
conditionally independent and hence the likelihood can be constructed as follows,

L(Y |{Xi}ni=1,β) =
n∏
i=1

J∏
j=1

gj(yij |fj(X>i βj + ri), γj). (5)

We specify the following proper prior distributions:

β|µ,Ω ∼ N(µ,Ω)

µ|a,A ∼ N(a,A)

Ω|R, ρ ∼ Wishart(R, ρ) (6)

γj ∼ p(γj)

ri|$2 ∼ N(0, $2)

$2 ∼ Gamma(1, 1) ,

where β = (β>1 ,β
>
2 , . . . ,β

>
J )> denotes the vector of regression coefficients (a slight abuse of

notation without causing difficulty in understanding); µ and Ω represent the mean vector
and the precision matrix, respectively, for β. Here R is a specified correlation matrix and
ρ gives the associated degrees of freedom. The prior distribution for γj , p(γj), is chosen
appropriately; and a and A are hyperparameters governing µ.

Samples from the posterior distribution are obtained by Markov Chain Monte Carlo (MCMC)
techniques via standard open source MCMC sampling software such as WinBUGS, Open-
BUGS or JAGS, etc. These samples should be analyzed to ensure convergence of the al-
gorithm and satisfactory quality of the samples. For more details on MCMC methods and
diagnostics, see Gelman et al. (2005).

3.2. Evaluation of the Benchmark Dose Tolerable Area

At a specified BMRη each inequality in (4) defines a tolerable region Tj associated with the
jth endpoint, j = 1, 2, . . . , J . The intersection of all J tolerable regions, T = ∩Jj=1Tj , gives
the BenchMark Dose Tolerable Region (BMDTR), which is analogous to BMD. For a given
β, the dosages X∗, that satisfy the inequalities in (4) are considered to present an acceptable
risk of adverse effect. Furthermore, each MCMC sample of β(m) leads to a BMDTR, T (m).
Define AT (m) as the area of T (m) corresponding to the mth MCMC sample,

AT (m) =

∫
T (m)

dX ,m = 1, 2, . . . ,M,
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where M denotes the total MCMC samples generated. The tolerable areas {AT (m)}Mm=1 can
then be ranked and a lower bound on the area of the tolerable region is defined by the MCMC
sample of β that corresponds to the qth quantile of the {AT (m)}Mm=1, e.g., q = 5. This gives
a 100× q% credible region of the BMDTR, parallel to the traditional BMDL.

3.3. Hyposensitive, Hypersensitive and Cosensitive Endpoints

Endpoints are not necessarily of equal importance, hence one needs to determine which end-
points are most sensitive to the stressors. Recall that the endpoint setting the minimum dose
for a particular stressor is deemed the most sensitive endpoint for that stressor. Consider
the OP data analysis given in Table 1. It has been identified that for ACE the most sensi-
tive endpoint is BrainChE and for DIA it is BloodChE. There the most sensitive endpoint
is found by intersecting the intervals reaching from 0 to the respective BMDLs across all the
endpoints under investigation. Here we introduce some key concepts to define a sensitive
endpoint more rigorously which is central to our proposed method. Let Tj be the tolerable
region corresponding to endpoint yj . Recall that the BMDTR is given by intersecting the
tolerable regions corresponding to all endpoints, i.e., BMDTR = ∩Jj=1Tj .

Definition: A given endpoint yj is said to be hypersensitive if that endpoint is the only one
necessary to define the BMDTR, i.e. the tolerable region associated with this endpoint is the
intersection of all tolerable regions. Mathematically speaking,

J⋂
l=1

Tl = Tj , j ∈ {1, 2, . . . , J}. (7)

Definition: An endpoint yj is said to be hyposensitive if that endpoint is not necessary to
define the BMDTR, i.e. the intersection of all the tolerable regions can be determined without
considering Tj . Mathematically speaking,

J⋂
`=1,`6=j

Tl =
J⋂
l=1

Tl, j ∈ {1, 2, . . . , J}. (8)

Definition: An endpoint that is neither hypersensitive nor hyposensitive is considered to be
cosensitive.

The BenchMark Dose Tolerable Set (BMDTS) is the set of endpoints that are hyper or
cosensitive, i.e. the minimum set of endpoints necessary to define the BMDTR. (The BMDTS
is the minimum cardinality set that consists of hyper or cosensitive endpoints.) Formally, the
BMDTS can be written as

BMDTS = argminyj{yj |
J⋂
j=1

Tj = BMDTR}.

The BMDTS tells researchers which endpoints are critical in defining an acceptable level of
exposures to stressors. In particular, we note that hyposensitive endpoints may be omitted
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from future studies if the same set of endpoints and stressors is of interest. Doing so could
potentially generate significant savings in resource investment in the first place.

Let us apply the concepts above to analyze the OP dataset. In the single dimension (one-
stressor) case one is simply taking intersections of intervals to find the BMDTR and the
BMDTS. Take the stressor DIA for an example, the tolerable regions due to different endpoints
are, respectively, T1 = [0, 111.51) for BriainChE, T2 = [0, 7.92) for BloodChE, T3 = [0, 131.23)
for motor activity and T4 = [0, 160.44) for tail pinch. Since the BMDTR for DIA is given
by ∩4j=1Tj = T2 = [0, 7.92), which corresponds to the second endpoint BloodChE, hence
BloodChE would be deemed hypersensitive for DIA. In a similar fashion, BrainChE is found
to be hypersensitive for ACE. Again we find that neither of the endpoints motor activity and
tail pinch contributes to defining the BMDTR for any of the stressors under study, therefore
they are hyposensitive.

3.4. Determine the BMDTR and Endpoint Probabilities

In addition to determining a BMDTR with a probability guarantee as explained in Subsec-
tion 3.2, the MCMC samples can be used to determine which endpoints play a role in defining
the BMDTRs with corresponding probabilities. This can be achieved via the GNU Linear
Programming Kit (GLPK) which is a library of routines for solving linear programming prob-
lems of the following form (written as a minimization problem):

min C>x,

subject to Gx ≤ b,

where C denotes the vector of coefficients that specifies the linear objective function, and
vector b and matrix G together define a system of linear constraints.

In the context of determining the BMDTS as defined in Subsection 3.3, each endpoint cor-
responds to a linear constraint in the linear program and the polytope defining the set of
feasible solutions in fact gives the BMDTR. Notice that the BMDTS is the minimum set of
endpoints whose corresponding constraints define the BMDTR. The BMDTS can be calcu-
lated by testing the feasibility of a series of linear programs as follows:

• The `th endpoint defines an inequality,

X>β` ≤ f−1` (η`), ` = 1, 2, ..., J. (9)

• For the jth endpoint, construct linear program LP j by making the jth constraint active
and including the remaining J − 1 inequality constraints given by (9), i.e.,

X>β` = f−1` (η`), ` = 1, 2, ..., J, ` 6= j, (10)

and setting C = 0, for j = 1, 2, ..., J . If LP j has a feasible solution, then we say that
the jth endpoint contributes to defining the BMDTR. This is a very computationally
efficient method for determining if an endpoint is important.

Now we are in a good position to calculate endpoint significance probabilities by applying the
aforementioned procedure to the generated MCMC samples. Recall that M gives the MCMC
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sample size. We estimate the significance probability P (yj ∈ BMDTSη) by P̂j , defined as
follows,

P̂j =
1

M

M∑
m=1

I{yj ∈ Z(m)}, j = 1, 2, . . . , J, (11)

where Z(m) represents the BMDTSη for the mth MCMC sample; I{U} is an indicator function
that takes value 1 if event U is true and 0 otherwise. The estimated significance probability
for the jth endpoint, P̂j , reflects the importance of that endpoint in defining the BMDTR.
If the estimated significance probability of a given endpoint is close to 1, then corresponding
endpoint is considered crucial in determining the BMDTR. In contrast, if the estimated
significance probability is close to 0, then that endpoint is expected to play little role in
defining the BMDTR; as a result, we can exclude that endpoint from further consideration
with great confidence. Notice that the aforementioned approach to determining the endpoint
probability heavily relies on the dose-response model specified being a generalized linear model
with only first-order terms.

We give a generic algorithm to summarize the steps of the Bayesian model-based approach
introduced in this section in Algorithm 1.

Algorithm 1 A generic algorithm

For m = 1 to M

1. Draw a sample βm ∼ p(β|D).

2. Determine the tolerable region associated with βm, denoted by T (m).

3. Determine the area of T (m), AT (m) .

4. Determine the smallest set of endpoints necessary that defines T (m), BMDTS
(m)
η .

End
Rank the elements in {AT (m)}Mm=1.
BMDTSη is the T (m∗) that corresponds to the ηth percentile of {AT (m)}Mm=1

The significance probability for the jth endpoint is estimated by P̂j , j = 1, 2, . . . , J .

4. Example

We detail an application of the proposed methodology presented in Section 3 to analyzing
the OP dataset. Two examples at different levels of complexity have been studied. The first
example concerns two of the five stressors and all four endpoints and the second example
extends the analysis to all five stressors present in the OP dataset. For the sake of brevity,
only the steps for analyzing the two-stressor case is presented. We refer the interested reader
to Tables 5—7 in the Appendix for results of the five-stressor case.

4.1. Analysis of OP Data with Two Stressors

Recall the OP dataset introduced in Section 2. This subsection considers analyzing dose-
response relationships of two stressors ACE (x1) and DIA (x2) and four endpoints BrainChE



Journal of Environmental Statistics 11

(y1), BloodChE (y2), motor activity (y3) and tail pinch (y4). Recall that BrainChE, BloodChE
and motor activity are continuous measurements which are scaled to percentage to control
and tail pinch counts the number of positive reactions to ni tail pinches.

The dose-response model adopted to describe the data is as follows:

Yi =


y1i
y2i
y3i
y4i

 ∼


N
(
exp(β10 + β11x1i + β12x2i + ri), σ

2
1

)
N
(
exp(β20 + β21x1i + β22x2i + ri), σ

2
2

)
N
(
exp(β30 + β31x1i + β32x2i + ri), σ

2
3

)
Binom

(
ni,

1
1+exp(β40+β41x1i+β42x2i+ri)

)
 , i = 1, 2, ..., n, (12)

where Yi denotes the vector of responses of the ith subject on the four endpoints due to
exposures to the two stressors mentioned; the other parameters can be understood without
difficulty following the notation established for (3) in Section 3. The formulation given in
(12) allows the three continuous endpoints and the binomial endpoint to be modeled simulta-
neously. Here ri denotes a random effect that accounts for within subject correlations across
the endpoints for the ith subject. From the model given in (12) the likelihood can be easily
constructed.

Given that the dose-response model has been defined for each endpoint and likelihood has
been specified, prior distributions are needed for obtaining the posterior distribution of the
parameters. To this end, the following prior distributions are assigned:

β ∼ N(µ,Ω)
Ω ∼ Wishart(I12, 12)
µ ∼ N(0, 100I12)
σj ∼ Gamma(1, 1)
ri ∼ N(0, $2)
$2 ∼ Gamma(1, 1) (13)

where β = (β>1 ,β
>
2 ,β

>
3 ,β

>
4 )> and βi = (βi0, βi1, βi2)

>, i = 1, 2, 3, 4; I12 denotes the 12 × 12
identity matrix and other parameters are as specified for (6) in Subsection 3.1. The posterior
distribution follows easily from (12) and (13),

P (β,Ω,µ|D) ∝ exp

−
3∑
j=1

σ2j

× exp

− 1

200

4∑
j=1

µ2j

×$−1 exp

{
− 1

2$2

n∑
i=1

r2i

}

× exp{−$2} × |Ω|−1/2 exp

{
−1

2
(β − µ)>Ω−1(β − µ)

}
×

n∏
i=1

(
ni
y4i

)((
1 + exp{x>i β4 + ri}

)−1 )y4i(
1−

(
1 + exp{x>i β4 + ri}

)−1 )ni−y4i

×

(
272π44

12∏
i=1

Γ

(
13− i

2

))−1
|I12|−6|Ω|−1/2 exp

{
−1

2
tr(Ω)

}
(14)

×

 3∏
j=1

σ2j

−n/2 exp
{
− 1

2

n∑
i=1

3∑
j=1

σ−2j

(
yji − exp{x>i βj + ri}

)2 }
.
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Table 2: The quantiles of the posterior samples and R̂ for the regression parameters for the
OP data with exposures to stressors ACE and DIA. Credible intervals in bold do not contain
0. The calculation is based on 10,000 posterior samples.

Endpoint Parameter 2.5% 50% 97.5% R̂

Brain ChE β10 -0.100 -0.049 -0.001 1.000
β11 -0.005 -0.004 -0.003 1.001
β12 -0.085 -0.064 -0.046 1.001

Blood ChE β20 -0.085 -0.012 0.059 1.002
β21 -0.060 -0.039 -0.026 1.001
β22 -0.072 -0.043 -0.025 1.001

Motor activity β30 -0.079 -0.028 0.022 1.005
β31 -0.003 -0.002 -0.001 1.001
β32 -0.033 -0.024 -0.018 1.004

Tail pinch β40 0.986 0.894 0.802 1.003
β41 0.004 0.002 0.0001 1.000
β42 0.011 0.006 0.001 1.001

Computation.

OpenBUGS is used to generate 10 chains of 101,000 MCMC samples from the posterior
distribution given in (14). To verify convergence of the chains traceplots are examined to
guarantee good mixing and the estimated potential scale reduction R̂ is verified to be less
than 1.006 for all parameters. The first 1,000 samples from each chain are discarded as burn-
in samples. The remaining 100,000 samples are thinned by 100 to minimize autocorrelations
in the samples, resulting in 1,000 samples from each chain. The 10,000 samples from the
combined chains are used to draw all inferences. The sampling process takes 115 seconds on
a computer with 2.3 GHz Intel Core i7 Processor with 8GB RAM.

Table 2 shows the 2.5%, 50% and 97.5% quantiles for each regression parameter. Notice that
the coefficients indicate a decreasing relationship between both stressors ACE and DIA and all
endpoints. Using the rule that if zero is in the credible interval then the particular parameter
is not considered statistically significant from zero, it is found that except for the intercepts
β20 and β30 all parameters are statistically significant. Nevertheless, we can conclude that
the stressors ACE and DIA indeed have a significant effect on the endpoints.

Evaluating BMDTR.

Using the MCMC samples of β obtained from the posterior distribution p(β|D), we can
determine the BMDTRη for the stressors. Recall that BMDTRη is the dosage region (in the
stressor space) which elicits responses on all endpoints that differ no more than η% from those
under the no exposure condition. In order to determine the BMDTRη, we need to first find
the corresponding BMRη associated with each endpoint (in the response space), which can
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be calculated as follows:

BMRη =


ln
(

(1− η/100)f̂1(0)
)

ln
(

(1− η/100)f̂2(0)
)

ln
(

(1− η/100)f̂3(0)
)

ln
(

(1−η/100)p̂4(0)
1−(1−η/100)p̂4(0)

)

 , (15)

where f̂j(0) corresponds to the estimated function value of the model for jth endpoint when no
stressor is applied. This is obtained by setting the dosage for both ACE and DIA to zero and
using the median values for the model parameters and evaluating fj ; Similarly, p̂4(0) is the
calculated probability of a positive reaction to a tail pinch when using zero doses for stressors
ACE and DIA and evaluating the function with the median values of the parameters. Notice
that (15) provides a vector of exposure limits that defines a η% tolerable region of stressor
dosages.

Using each of the MCMC samples, β(m), we determine AT (m) as explained in Subsection 3.2
and calculate the 5th quantile of AT (m) and the corresponding β. This results in a BMDTRη

for a given value of η. For different values of η, the corresponding BMDTRη can be determined
by following the approach presented in Subsection 3.4.

Consider the OP dataset. The BMDTR50 (i.e., η=50) is defined as the dosages (x∗1, x
∗
2) that

satisfy the following constraints:
−0.742
−0.705
−0.720
0.597

 ≤

−0.041 −0.004 −0.072
−0.009 −0.050 −0.063
−0.018 −0.002 −0.034
0.860 0.001 0.007


 1

x∗1
x∗2

 , (16)

x∗1 ≥ 0, x∗2 ≥ 0.

Notice that the left-hand side of (16) is given by evaluating (15) at η = 50. Figure 1 shows the
plot of the BMDTR50 associated with exposures to ACE and DIA as well as the contours of the
BMDTRη for η = 10, 25 and 50. Notice that y1 (BrainChE) and y2 (BloodChE) are cosensitive
endpoints as these are the only two endpoints that contribute to defining the BMDTR50 .
Furthermore, from visual inspection of Figure 1(a) it appears that y2 is the endpoint that
mostly defines the BMDTR50 as the edge associated with y1 is very short. Hence one may
be tempted to conclude that y1 could be omitted from consideration along with y3 and y4.
From Figure 1(b) observe that the shape of the tolerable region is consistent across different
levels of η. More importantly, y1 contributes to the definition of the BMDTRη across different
levels of η thus omitting y1 would be not advised. This observation demonstrates the need to
determine which endpoints the BMDTRη is sensitive to and their corresponding sensitivity
levels. To proceed we next determine the significance probability P (yj ∈ BMDTSη) for each
of endpoint under consideration.

Endpoint significance probability.

Using Figure 1 alone one can readily tell that the BMDTRη is defined by y1 and y2. In higher
dimensions, however, visualization of the BMDTRη is not as straightforward or even becomes
impossible. Equation (11) given in Subsection 3.4 provides a rigorous way to determine the
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Figure 1: (a) The BMDTR50 associated with exposures to ACE (x1) and DIA (x2) and (b)
the contours of BMDTRη for η = 10, 25 and 50.

Table 3: Estimated endpoint significance probabilities, P̂ (yj ∈ BMDTS), for the OP data
with exposures to ACE and DIA. The calculation is based on 10,000 posterior samples.

η
Endpoint (yj) 10 25 50

BrainChE (y1) 0.856 0.945 0.938
BloodChE (y2) 0.998 1 1
Motor activity (y3) 0.001 0 0
Tail pinch (y4) 0 0 0

significance of each endpoint by calculating the estimate P̂ (yj ∈ BMDTSη). Table 3 shows the

estimated significance probabilities, P̂ (yj ∈ BMDTSη), for different levels of η. Notice that

the values of P̂ (yj ∈ BMDTSη) vary across the levels of η. The magnitudes of the estimated
significance probabilities of y1 (BrainChE) and y2 (BloodChE) imply that both endpoints
play a critical role in determining the BMDTRη and hence should be deemed cosensitive. On
the other hand, the significance probability of y4 (tail pinch) is estimated to be consistently
0, which manifests that this endpoint is hyposensitive; a similar conclusion can be reached for
y3 (motor activity) as well. Since motor activity and tail pinch are considered hyposensitive,
one could omit them from future consideration.

Robustness analysis.

To determine the robustness of the analysis relative to prior distribution specification, a sen-
sitivity study is conducted by varying the prior distribution variance parameters for µ. Recall



Journal of Environmental Statistics 15

Table 4: Posterior endpoint significance probabilities, P̂ (yj ∈ BMDTS), for the OP data
with exposures to ACE and DIA with varying σ2µ values. The calculation is based on 10,000
posterior samples.

η = 10 η = 25
Endpoint (yj) σ2µ 100 50 10 100 50 10

BrainChE (y1) 0.856 0.851 0.849 0.945 0.938 0.941
BloodChE (y2) 0.998 0.998 0.998 1 1 1
Motor Activity (y3) 0.001 0.001 0.001 0 0 0
Tail pinch (y4) 0 0 0 0 0 0

µ is the mean of the β vector and is normally distributed with mean 0 and variance matrix
100I12. Let σ2µ represent the variance of µ (in this case 100). As σ2µ decreases the prior
distribution becomes more informative and the posterior estimates will be shrunk towards
the prior mean 0. For σ2µ =10, 50 and 100 the model is refit and the endpoint significance

probabilities P̂ (yj ∈ BMDTSη)’s are computed. Parameter quantiles are obtained from the
posterior distributions for each value of σ2µ and are found to be sufficiently similar to those
given in Table 2, hence we conclude that the inferences drawn for the model parameters are
not sensitive to prior distribution specification. Table 4 shows the results of the sensitivity
study with respect to endpoint significance probabilities. Notice that the estimated endpoint
significance probabilities do not change much as the prior distribution on µ becomes increas-
ingly informative. Hence we conclude that the specification of the prior distribution used
in the analysis does not affect the final result and is appropriate with lack of strong prior
information.

5. Discussion and Future Research

This paper presents a methodology to analyze datasets with multiple endpoints and multiple
stressors in a dose-response setting. The proposed model is easy to fit using WinBUGS
or OpenBUGS with reasonable computational resources invested. The method utilizes the
notion of area or volume to determine the BMDTR for multiple stressors. The idea allows
endpoints that do not contribute to defining the BMDTR to be systematically omitted from
future consideration. Furthermore, the endpoint significance probabilities permit researchers
to determine the importance of endpoints in determining the BMDTR and hence provide a
rigorously justified tool to screen endpoints for future studies. This could lead to significant
amount of savings in computational resources and would prove to be much more valuable in
the lab experiment setting. The proposed method was demonstrated through two examples
on the OP pesticides dataset.

In Section 4 the proposed method gives a different tolerable region from that obtained by
treating each endpoint independently. Consider the dosage combination of two chemicals 12
(mg/kg) ACE and 7 (mg/kg) of DIA. Recall that the independent analysis based on Table 1
would conclude that this dosage combination is tolerable as it is lower than the BMDL50 for
both stressors. However, examining Figure 1 suggests that this combination should be deemed
unacceptable when considering the aggregated effects of the two chemicals, which is taken
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into account by the proposed method. This could be an indication that there may be some
interaction between the two chemicals that is pulling the tolerable region in a conservative
manner. The proposed method does not account for possible interactive effects.

Since the OP dataset did not have a wide range of dose combinations, the method proposed
is based on the assumption that the effects of stressors are additive. Taking into account
of interaction effects appears to be straightforward to achieve by simply adding interaction
terms into each of the dose-response model expressions. Nevertheless, potential issues could
arise and need to be addressed. While using the area or volume to define the BMDTR is still
viable, the approach of employing a linear program to determine the significance probability
P (yj ∈ BMDTS) no longer applies. Therefore, a different strategy will need to be proposed
to determine the significance probabilities. Another issue that needs to be addressed is how
sensitive the method is to the size of the dataset. In many data collection efforts it is difficult
to obtain large samples such as the one provided in our example. This could be done via a
simulation study to determine how well the method performs under different sample sizes and
how it performs when larger numbers of endpoints are considered.

In this paper, we use simple dose-response models that include all the stressors under investi-
gation as predictors for the convenience of analysis without introducing undue complications.
Nevertheless, one should consider alternative choices of dose-response models to better fit
their data and produce more accurate tolerable regions. Moreover, if parsimony is of interest
one should also consider selecting a subset of stressors to use for each endpoint model. This
is potentially quite involved as simultaneously choosing the appropriate endpoint model and
the corresponding set of stressors is not straightforward. The aforementioned issues among
others are considered as future research topics and we expect an in-depth study of these to
yield fruitful results.
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Appendix

Table 5: The 2.5%, 50% and 97.5% quantiles and R̂ of the posterior samples for the regression
parameters for the OP data with exposures to ACE, DIA, DTO, CPF and MAL. Credible
intervals in bold do not contain 0. The calculation is based on 10,000 posterior samples.

Endpoint Parameter 2.5% 50% 97.5% R̂

BrainCHE β10 Intercept -0.126 -0.076 -0.037 1.003
β11 ACE -0.007 -0.006 -0.004 1.005
β12 DIA -0.082 -0.052 -0.035 1.000
β13 MAL -0.037 -0.029 -0.022 1.002
β14 CPF -0.0006 -0.0003 0.0001 1.001
β15 DTO -0.022 -0.018 -0.013 1.002

BloodChE β20 Intercept -0.135 -0.085 -0.041 1.002
β21 ACE -0.074 -0.059 -0.046 1.003
β22 DIA -0.038 -0.029 -0.021 1.001
β23 MAL -0.039 -0.031 -0.024 1.004
β24 CPF -0.0022 -0.0016 -0.0011 1.003
β25 DTO -0.670 -0.564 -0.455 1.003

Motor Activity β30 Intercept -0.097 -0.085 -0.027 1.002
β31 ACE -0.004 -0.003 -0.002 1.002
β32 DIA -0.027 -0.020 -0.015 1.000
β33 MAL -0.015 -0.012 -0.009 1.001
β34 CPF -0.0003 -0.0000 0.0003 1.006
β35 DTO -0.031 -0.025 -0.018 1.003

Tail pinch β40 Intercept 0.887 0.785 0.686 1.003
β41 ACE 0.004 0.003 0.002 1.002
β42 DIA 0.011 0.006 0.002 1.003
β43 MAL 0.010 0.004 0.002 1.001
β44 CPF -0.0015 0.0006 0.0003 1.001
β45 DTO 0.019 0.009 0.000 1.003
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Table 6: Posterior endpoint significance probabilities, P̂ (yj ∈ BMDTS), for the OP data with
exposures to ACE, DIA, DTO, CPF and MAL. The calculation is based on 10,000 posterior
samples.

η
Endpoint (yj) 10 25 50

BrainChE (y1) 0.9728 0.9986 1
BloodChE (y2) 0.9982 1 1
Motor activity (y3) 0.0014 0 0
Tail pinch (y4) 0.024 0.002 0.0026
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Table 7: Posterior endpoint significance probabilities, P̂ (yj ∈ BMDTS), for the OP data with
exposures to ACE, DIA, DTO, CPF and MAL with varying values of σ2µ. The calculation is
based on 10,000 posterior samples.

η = 10 η = 25
Endpoint (yj) σ2µ 100 50 10 100 50 10

BrainChE (y1) 0.9728 0.9788 0.9751 0.9986 0.9994 0.9987
BloodChE (y2) 0.9982 0.9982 0.9992 1 1 1
Motor activity (y3) 0.0014 0 0.0041 0 0 0
Tail pinch (y4) 0.0240 0.0197 0.0250 0.0020 0.0008 0.0013
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