
jes

Journal of Environmental Statistics
September 2018, Volume 8, Issue 2. http://www.jenvstat.org

Rater Classification by Means of Set-theoretic

Methods Applied to Forestry Data

Dietrich Stoyan Arne Pommerening Andreas Wünsche

Abstract
We consider a situation where r raters select subsets from a set of n items by marking them

by ‘0’ or ‘1’, as in classification problems, approval voting and in general subset voting. The
number r of raters is small in comparison to the number n of items. We intend to classify the
raters, to understand their behavior and to go beyond the possibilities of classical statistical
methods such as Fleiss’ kappa, cluster analysis or latent class analysis.

We use a non-parametric set-theoretic approach, which is natural for the given dichotomous
setting. We recommend the determination of a set-theoretic mean, the Vorob’ev expectation,
to play a role similar to the classical mean of a sample. In particular, we use distances of the
raters’ subsets from the mean as characteristics of the individual raters.

Furthermore, we introduce a new measure of conformity of a given rater with all others,
characterizing the extent to which the rater deviates from the whole group of raters.

We demonstrate the use of these methods in a case study, where the raters are forest man-
agers and the items are trees in a forest thinning experiment. Our aim is to contribute to
an understanding of the psychological processes involved, when forest managers mark trees for
forest operations.

Keywords: binary measurements, conformity of raters, marking of forest trees, expectation of random
set, random set, rater classification in forestry.

1. Introduction

Many problems in environmental, psychological and multivariate statistics (Cichetti, 1994; Hall-
green, 2012; Sheskin, 1997) are related to the following situation:

There is a group of r raters or voters and n subjects, items or candidates. (In the following we
speak about ‘raters’ and ‘items’.) Every rater evaluates every item by marking approvals by ‘1’ and
disapprovals by ‘0’, i.e., the evaluation or measurement is dichotomous. The array of r × n marks
‘0’ and ‘1’ is considered as data and analyzed in various ways by well-known statistical methods.
In the present paper r is relatively small and n comparatively large, i.e., a relatively small number
of raters rates a large number of items.

http://www.jenvstat.org


2 Rater Classification

Several standard statistical analysis methods aim to make inference of the behavior of raters. We
give four examples.

– Cochran’s Q test considers the question whether there are significant differences in rater activity
(Sheskin, 1997). If the null-hypothesis that all raters assign mark 1 with equal frequencies is rejected
by the chi-square test, it can be assumed that at least two of the r raters have significantly different
rating activities. These raters can be identified by pairwise comparisons using the McNemar test.
– Fleiss’ kappa is a numerical statistical characteristic which helps to characterize rater agreement
in the whole rater group (Fleiss et al., 2003). It has the character of a correlation coefficient: κ = 1
means complete agreement and κ = −1 disagreement; the case κ = 0 is related to rating by chance.
By its nature, κ does not provide information on the individual behavior of single raters (Stoyan
et al., 2018).
– Cluster analysis (see e.g., Everitt et al., 2011) applied in the present setting yields clusters or
classes of raters with similar behavior. Raters with close inter-rater distances (measured for example
by the Manhattan metric, which is suitable for dichotomous data), are arranged in clusters. This
approach in the context of the rating problem was used already by Schouten (1982) and Stoyan et
al. (2018).

None of these methods directly helps to understand the behavior of individual raters, i.e., to un-
derstand the formation of classes, clusters or groups obtained by classification methods. This
understanding is not an easy problem, in particular if only the dichotomous data are available
without any additional information from covariates.

In contrast, latent class analysis, LCA (see Collins and Lanza, 2010, and Uebersax and Grove,
1993) allows an individual characterization of raters, however, in our case in an indirect way only:
because the number of raters r is small in comparison to the number of items LCA cannot be used
to form groups of raters. Nevertheless, it can be applied to form two groups of items that consist of
the items with ‘true’ marks ‘1’ and ‘0’, respectively, and then to determine the diagnostic power of
raters. Statistical indicators for this purpose are the so-called specificity and sensitivity (Uebersax
and Grove, 1993), where specificity is the probability of a negative rating given a negative case
and sensitivity is the probability of a positive rating given a positive case. However, the task of
interpreting these indicators remains.

The present paper suggests non-parametric solutions to the problem of explaining the individual
behavior of single raters. Adapted to the dichotomous nature of the data we use set-theoretic ideas
and try to exhaust the information given in this way. Indeed, every rater i forms a subset Xi of the
set E of all items, simply the set of items marked by ‘1’. This approach is inspired by the idea of
subset voting (Regenwetter et al., 2006). In subset voting, stochastic random-set models exist, e.g.,
the ‘size-independent model of approval voting’ (Regenwetter et al., 2006). However, the present
paper uses a non-parametric approach.

We assume that the Xi are realizations of a finite discrete random set X. We recommend the
use of a random-set mean, the empirical Vorob’ev expectation X, as a result of the rating process,
produced by the ‘wisdom of rater crowd’. It supports the determination of distances of single raters
from X. Finally, we introduce a measure for the conformity of single raters with the whole group
of all raters.

Our paper is organized as follows. Section 2 presents the set-theoretic methods, namely the Vorob’ev
expectation X, the distances δi of the raters from this expectation, and the conformity numbers
ci. Then, in order to motivate the new set-theoretic approach we consider a data example from
environmental statistics, namely from forest management. It is described in detail in Section 3. In
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this example, r = 15 forest managers evaluate n = 387 trees. This includes the application of the
classical statistical methods mentioned above and some discussion of their results. Then the new
summary characteristics are presented for the forest data. In the last Section 4 we then discuss the
benefit of the application of the set-theoretic methods.

2. Set-theoretic statistics

2.1. Description of sets

There is a set E of n elements, {1, 2, . . . , n}, in rating terminology the set of all items. We consider
subsets of E, which we call ‘sets.’

The standard descriptor of a set A is its indicator function 1A(·) defined by

1A(j) =

{
1 for j ∈ A
0 otherwise.

(1)

The number of elements of a set A is denoted by |A|,

|A| =
n∑

j=1

1A(j).

Distances between sets are defined in a set-theoretic sense, based on the notion of symmetric
difference. For two subsets A and B of a set E the symmetric difference A∆B is

A∆B = A \B ∪B \A,

where \ is the set-theoretic minus. The distance between A and B is δ(A,B) = |A∆B|. It can be
computed as

δ(A,B) =
n∑

j=1

|1A(j)− 1B(j)|, (2)

which shows that the distance is just the distance corresponding to the L1-norm (or sum norm or
Manhattan norm) in Rn.

2.2. The Vorob’ev expectation

Let X be a finite discrete random subset of E. (The general theory of random sets is presented in
detail in Molchanov (2005, 2017), while for this paper a naive understanding suffices; we use some
of the ideas of the theory.)

An important summary characteristic of a random set X is its coverage function pX(·) defined by

pX(j) = E(1X(j)) = P(j ∈ X) for j ∈ E. (3)

Using the coverage function so-called t-th quantiles {pX ≥ t} are defined by

{pX ≥ t} = {j ∈ E : pX(j) ≥ t} for t ≥ 0, (4)
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which are deterministic sets.

The Vorob’ev expectation of X, EV (X), is defined as the set {pX ≥ t} for t ∈ [0, 1] which is
determined by the equation

E(|X|) = |{pX ≥ t}|,

if this equation has a solution, or, in general, from the condition

|{pX ≥ s}| ≤ E(|X|) ≤ |{pX ≥ t}| for all s > t. (5)

This definition is the same as Definition 2.1 in Molchanov (2005), p. 177, with µ(·) replaced by | · |,
and Definition 2.2.3 in Molchanov (2017), p. 283. The discrete case used here was also considered
in the original paper by Vorob’ev (1984).

We see that EV (X) is the t-th quantile of X having minimum element number equal or larger than
E(|X|).
The deeper sense behind the definition of Vorob’ev expectation is the following minimization prop-
erty: For each finite set M with |M | ≤ EV (X) it holds

E|X∆EV (X)| ≤ E|(X∆M)|,

see Molchanov (2005), p. 177, and Molchanov (2017), p. 284.

2.3. Statistical analysis

General

Now we turn to samples of finite random sets and present statistical tools for their analysis.

We assume that the random sets X1, X2, . . . , Xn are given and have the same distribution as a
prototype X. Our aim is to estimate the Vorob’ev expectation EV (X) and then to analyse the
relationship of the Xi, which are assumed to be not empty, to the empirical version of EV (X).

We use the notation
si = |Xi| for i = 1, 2, . . . , r

and

s =
1

r

r∑
i=1

si.

Clearly, s serves as an estimator of E(|X|). We estimate the coverage function pX(j) by

p̂X(j) =
nj
r

for j = 1, 2, . . . , n, (6)

where nj is the number of sets containing element j, i.e.

nj =

r∑
i=1

1Xi(j) for j = 1, 2, . . . , n.

We consider below the coverage function as a function of a real variable (which we also denote by
j), which is constant in the intervals between integers.

Note that the si and nj are the margins of the two-way table of 0’s and 1’s corresponding to the
rating problem.
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Finally, X is the empirical Vorob’ev expectation, given by (5) with pX(j) replaced by p̂X(j) and
E(|X|) by s.

When the Vorob’ev mean is determined, the distances δi of the sets Xi from X in the sense of
equation (2) can be used as characteristics of the degree of conformity of the raters with the whole
collective of raters.

Ranking of items

The presentation of coverage function and Vorob’ev mean becomes clearer if we rank the items j
according to the numbers nj , where items with larger nj are ranked lower than those with smaller
nj , while the ranking of items with equal nj does not matter. Thus after ranking the nj form a
decreasing sequence.

This ranking is used in the following for numbering the items. It implies that the empirical coverage
function p̂X(j) is decreasing in j. Furthermore, the empirical Vorob’ev expectation X has the form
{1, 2, . . . ,m} with m obtained as

m = max{j : p̂X(j) = p̂X(s)}. (7)

This can be interpreted as follows: s is a positive real number between 1 and n and lies in an
interval with integer end points where p̂X(·) is constant. The right end point m of this interval is
also the end point of the empirical Vorob’ev mean. We remark that the number m leads to another
way of understanding X. By definition of the empirical coverage function there is an integer L with

p̂X(m) = L/r.

Thus X is the set of all items with at least L 1-marks, with

L = rp̂X(m). (8)

Conformity numbers ci

The conformity of rating of rater i with the other raters can be characterized also by a numerical
characteristic, which we call conformity number ci. It is defined by

ci =
1

si

n∑
j=1

1Xi(j) · nj for i = 1, 2, . . . , r. (9)

That means: ci is the mean of the numbers nj of items chosen by rater i.

A large value of ci means that rater i has a ‘tendency to conform’ with the general rating tendency
of all r raters, since most of the items marked by this rater are items frequently chosen by others
as well.

The conformity numbers offer information from the interior of the two-way table which is not
included in the margins. However, they have a weakness: active raters with large si necessarily
mark also items that are not frequently marked. This reduces the values of the corresponding ci,
which may lead to a biased impression. Therefore, we recommend the use of the relative conformity
numbers ri defined by

ri = ci/Ci for i = 1, 2, . . . , r, (10)
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with

Ci =
1

si

si∑
j=1

nj for i = 1, 2, . . . , r. (11)

The quantity Ci is the conformity number of an idealized rater who marks si items as rater i does,
but he chooses the si items with the largest numbers nj in the list of all items. The ratio ri aims
to compensate for the size bias of the ci. The ri are positive numbers smaller than 1. A large value
of ri indicates a high degree of conformity of rater i with the whole group of raters.

3. Forestry example

3.1. Data description

We consider a situation where r forest managers classify n trees either as trees to be maintained or
as trees to be removed. They assign tree marks, either ‘0’ or ‘1’, where mark ‘1’ means ‘remove’.
In our data example there are r = 15 forest managers, which we call in the following ‘raters’, and
n = 387 trees.

The aim of such tree-marking experiments is to study the personal strategies of forest managers
and their agreement in the tree-selection procedure, which can provide psychological insights into
the foresters’ thinking, see Vı́tková et al. (2016). As part of standard forest management practice,
thinnings are regularly applied to forest stands in order to reduce tree density while trees naturally
increase in size. The selection of trees for thinnings and of those to leave behind is not trivial and
requires detailed ecological and silvicultural skills that are provided in forestry training courses.
The long-term development of forest stands and their ability to provide anticipated goods and
services largely depends on decisions made by trained forest managers. Yet, even the most skilled
forest managers continue to be human beings with a unique set of personal preferences, experiences
and flaws that influence their decision making. Considering how important marking decisions are
for the development of managed forest ecosystems, it is crucial to understand the selection behavior
of forestry staff. The analysis of human selection behavior is likely to lead to valuable psychological
insights. As part of this it is possible to understand interactions within and between groups of forest
managers better and why certain forest managers nearly always select the same trees while others
make completely different choices. This understanding can prove helpful for preparing goal-oriented
training courses, which take lessons learnt from this research into account.

The matter also plays an important role in computer-based forest models which simulate the devel-
opment of forests over time. In such models, it has commonly been assumed that forest managers
and machine operators mark trees according to theoretical rules published in forestry textbooks
and according to best practice. Previous studies, however, have cast doubt on this assumption
(Zucchini and von Gadow, 1995; Füldner et al., 1996; Spinelli et al., 2016; Pommerening et al.,
2018). The authors of these studies have found only little agreement in the marking behavior among
forestry professionals. While Spinelli et al. (2016) speculate that different practical experience in
tree marking is a possible explanation, we assume that also education and individual personality
play a role. This was confirmed by Vı́tková et al. (2016) who report a tree marking experiment
in Ireland involving raters with different experience and education. They required the raters to
perform the marking twice in the same experimental forest, once before and once after training
in a new marking technique. It turned out that experts were unwilling to adopt the new marking
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method and the training led to confusion and decreasing agreement in this group. In contrast,
novices responded well to the training and the agreement in this group was significantly higher
than among the experts. Pommerening et al. (2018) came to similar conclusions when analysing
36 marking experiments from all over Britain. The authors also found that more complex forest
structure appears to facilitate the decision process.

Before the experiment referred to in this paper started, the raters were informed and coached using
thinning instructions, which implied a clear thinning strategy involving the retention of dominant,
good quality trees, so-called frame trees, and the removal of frame-tree competitors.

For the statistical analysis, we ordered the raters with respect to the number of trees they marked
with ‘1’; rater #1 is thus the rater with most ‘1’ marks. This simplifies the presentation of our
results.

The experiment analysed in this paper deliberately included forest managers and other persons
with quite different backgrounds and therefore different marking psychology. Most of the forest
managers were from the UK. It was a problem for the majority of participants that they were asked
to use a thinning strategy that conflicted with their experience. The strategy they usually use is low
thinning, otherwise known as ‘thinning from below’, where trees are removed mainly from the lower
canopy layer and from among the smaller diameter trees. But in the experiment they were asked
to apply crown thinning, also referred to as ‘thinning from above’, where trees are removed that
are part of the upper canopy layer in order to favour the best trees of the main canopy by removing
their direct competitors. Forest manager #1 was an employee of the Forestry Commission, #2 and
#6 were experienced employees of British forest management firms and #8 was a forest engineer
of Bangor University. In contrast, persons #3, #4, #5, #7, #10, and #12 were inexperienced
employees or students. The others had a varied background, some were working for forestry firms,
others were self-employed or private persons with an interest in forestry or were private persons.
Finally, #9 was the organizer and trainer of the workshop.

It is clear that while marking a particular tree in one part of the forest a forest manager can hardly
recall all other trees of the forest he has already visited. There are complicated spatial correlations
between the marks of trees close together, where the aforementioned frame trees play an important
role. There could, for example, be agreement in the selection of frame trees but differences in which
specific trees to thin around them. Or, there could be differences in the frame tree selection with
consequences for many more trees even at larger distances. Since we concentrate on data analytic
methods and statistical mean values, we ignore these dependencies here.

The forestry data studied in this paper can be downloaded from www.pommerening.org. We have
used data from research plot 7 in Coed y Brenin (North Wales, UK) surveyed in 2006. The data
were originally collected as part of a training workshop for forest managers.

3.2. Classical data analysis

In order to convince the reader that a detailed statistical analysis of the forestry data really makes
sense, first simple classical data analysis methods were used to check whether or not there is
agreement between the raters. We used for this purpose the methods mentioned in the Introduction.

Fleiss’ kappa is very small, κ = 0.102, which according to Landis and Koch (1977) means that there
is only ‘slight agreement’; Table 4 in Stoyan et al. (2018) interprets this value as between ‘slight’
and ‘fair agreement’. Cochran’s Q test yields a clear rejection of the null hypothesis of equality
of the probabilities of marking with ‘1’ for all raters, i.e. the hypothesis of equal rater activity.



8 Rater Classification

Pairwise comparisons using the McNemar test show that, for example, even the differences between
forest managers #1 and 2, #3 and 4, #11 and 12 and #14 and 15 are significant.

These results are plausible since the numbers si of trees marked by raters i are quite different, see
Fig. 1. This figure, termed rater histogram in Pommerening et al. (2018), shows for each of the 15
raters the numbers si/387 of trees marked with ’1’. For example, raters #1 and #15 assigning 184
and 37 1-marks, respectively, have extreme positions in the histogram.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.0

0.1

0.2

0.3

0.4

0.5
si/387

#i

Figure 1: The marking activities of the 15 forest managers shown by the proportions si/387 of
marked trees, where si is the number of trees marked by forest manager #i.

Also the passive marking frequency of the trees shows great variability, see Fig. 2. This marking
histogram (Pommerening et al., 2018) shows the empirical distribution of the proportions of trees
getting mark ’1’. There are 30 trees without any ‘1’ mark, which is shown by the bar at 0, and
no tree has received the theoretically possible maximum of 15 ‘1’ marks; also 14 ‘1’ marks were
not received. The zero class looks like a case where all forest managers are in perfect agreement,
however, this is only a kind of pseudo- or passive agreement. The situation of trees that are marked
by none of the forest managers is not unusual, see the discussion in Zuchini and von Gadow (1995).

Following Schouten (1982) and Stoyan et al. (2018) we used cluster analysis to find subgroups of
raters with similar behavior. Fig. 3 shows a dendrogram resulting from cluster analysis with the
Ward algorithm and Manhattan distance. The 15 variables used are the rater-related sequences of
387 0’s and 1’s.

As expected, if one chooses a four-cluster solution (like in Fig. 3), forest manager #1 forms a
single cluster probably simply because of the large number of trees marked. The other clusters are
difficult to explain. In the large #4, ..., #15 cluster, there are mainly forest managers with low
marking activity.

Finally we applied LCA using the TAM::tamaan function in the R-package TAM (Kiefer et al.,
2016; R Development Core Team, 2016) to the data in order to form two classes of trees, which
we identify with the trees which should be marked by ‘1’ and ‘0’. The corresponding latent class
probabilities are 0.355 (for ‘1’) and 0.645 (for ‘0’), respectively. The model with two classes was
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Figure 2: The passive marking frequencies, i.e., the frequencies of ‘1’ marks assigned to the trees.

 

  

 

 

  

 

 

 

  

 

  5
0

1
0

0
1

5
0

2
0

0

Cluster Dendrogram

hclust (*, "ward.D")
as.dist(d)

1

2 3
4

5

6

7

8
9 10

11
12 13

14 15

Figure 3: Cluster analysis dendrogram for the 15 forest managers with four distinctive clusters
highlighted in red.

preferred over a latent class model with three classes due to the smaller Bayesian information
criterion (BIC) value.

Fig. 4 shows the estimated probabilities of trees belonging to class ‘1’ in dependence on the
frequency of their ‘1’ marks. For example, for a tree with three ’1’ marks the probability has
quartiles of 0.027 and 0.138. Since the trees are ordered with respect to the frequency of being
marked by the forest managers, there is a tendency of monotonous increase. The degenerated
boxplot at frequency 7 suggests interpreting trees marked more often than 7 times as trees of class
1, while rarely marked trees (not marked at all or only once) may be interpreted as trees of class 0.
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Figure 4: Boxplots of the estimated probabilities of classification as ‘1’ for the 387 trees in depen-
dence on the frequency of ‘1’ rating.

We observe a great variability of the probabilities of trees marked by four and five forest managers.

In a next step the forest managers were characterized by the values of specificity and sensitivity
shown in Fig. 5.
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Figure 5: Scatterplot of specificity and sensitivity of the 15 forest managers as obtained by LCA.

We see the (not surprising) tendency that active raters (raters that often assigned mark ‘1’) mark
those trees frequently with ‘1’ which are often considered by LCA as ‘1’ trees, and that non-active
raters mark those trees frequently with ‘0’ which are considered as ‘0’ trees by LCA. As Fig. 5 shows,
rater #1 has an extreme position in the scatterplot, which may be explained by his rating activity.
Raters #3, #6 and #11 may be considered ‘normal’ raters, since they both show large sensitivities
and specificities. Raters #12 to #15 form a subgroup of raters of small sensitivity, mainly because
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of their small rating activities. Finally, all other raters form a group with medium sensitivities
and specificities. If one determines the probability of correct classification using sensitivity and
specificity, the largest value of 0.81 is obtained for rater #6, followed by #11 with 0.79, while the
smallest value is 0.59 for rater #7. That may mean that this rater has a rating behavior quite
different from that of the whole group.

3.3. Set-theoretic results for the forestry data

Fig. 6 shows the coverage function p̂X(j) for the forest data. It is a decreasing function of tree
number j. We use it for the determination of the Vorob’ev mean X. The mean number of marked
trees per forest manager is s = 96.13. This number belongs to the interval [91, 130], where p̂X(j)
takes the constant value 1/3; by the way, this interval belongs to trees marked by five forest
managers. By definition, the Vorob’ev mean X is the set {1, 2, . . . , 130}.

0 100 200 300 400

0.0

0.2

0.4

0.6

0.8

1.0 p̂X(j)

j

Figure 6: The empirical coverage function for the forestry data. For a given tree number j it gives
the proportion of the numbers of forest managers who marked tree j. The maximum number of
marks is 13 and the minimum is 0, it is p̂X(1) = 13/15 and p̂X(358) = 0. As a result of ordering
the trees p̂X(j) is a decreasing function.

In other words, X is the set of all trees marked by five or more forest managers. This set may be
interpreted as the set of trees the 15 raters want to determine as ‘1’ trees.

By the way, also LCA leads to such a set. One could take a tree number close to 96.13 trees with
a probability of ‘1’ classification larger than some limit. (The probability is 0.883 for the 96th and
97th tree when ordering the trees according to the probabilities.) This set would include some trees
marked only by four forest managers, and some trees marked by six forest managers would not
belong to this set. The differences between the two sets result from differences in weighting the
raters. While in the set-theoretic approach all raters are considered equal, in the LCA approach
raters considered ‘normal’ (e.g. raters #6 and #11) have higher weights.

Fig. 7 shows a scatterplot of the pairs (si, ci) (number of trees marked by forest manager #i,
conformity number of forest manager #i) for the forest data. Additionally, in red (+) are shown
15 pairs (si, ci) for simulated data obtained from 15 sequences of 387 randomly marked trees. (For



12 Rater Classification

every pair of forester #i and tree (j) the probability of 0.248 for choosing ‘1’ was taken, and the
selection process was completely random. 0.248 is the proportion of ‘1’ marks in the data.)

There are big differences between the two data sets. The points of the simulated data are close
together and show, as expected, no structure. By contrast, for the forest data we clearly see a
distinctive structure, with a high degree of negative correlation between the si and ci, i.e., active
raters tend to be less conform than passive ones.

Table 1: The mark numbers si, the conformity numbers ci, the relative conformity numbers ri and
the distances δi from the empirical Vorob’ev expectation X for the 15 raters.

i si ci ri δi
1 184 4.83 0.81 128
2 134 5.07 0.77 124
3 130 5.52 0.82 102
4 115 5.43 0.79 115
5 112 5.37 0.77 114
6 105 6.05 0.85 77
7 104 4.88 0.69 136
8 101 5.63 0.79 101
9 93 5.44 0.74 123

10 86 5.57 0.74 114
11 84 6.29 0.83 88
12 57 5.95 0.72 117
13 54 6.41 0.76 104
14 46 7.07 0.81 102
15 37 6.95 0.76 107
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Figure 7: Scatter plot of the (si, ci), (number of trees marked by forest manager i, average mark
number of the trees marked by forest manager i = conformity number).

Fig. 5 and 7 show some similarity. Indeed, the si are positively correlated with the sensitivities
and the ci with the specificities. But note how simple the determination of si and ci is compared
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to that of sensitivities and specificities!

Perhaps the relative conformity numbers ri in Table 1 show the structure of the rater group in a
still clearer way. We now see that rater #1 is not only very active but also rather conform, he has
one of the largest relative conformity numbers. The most conform rater in terms of the relative
conformity numbers is rater #6, one of the older, experienced raters. The most non-conform rater
is #7, a young student. The trainer of the experiment, rater #9, belongs to the raters with low
conformity.

Finally, the set-theoretic distances δi between the Xi of the forest managers and the empirical
Vorob’ev expectation are given in Table 1. It is interesting that raters #6 and #7 also here assume
extreme positions, #6 has the minimum distance and #7 the maximum. (By the way, a refined
analysis of the data revealed that #6 shows a somewhat special behavior: he has the maximum
number of marks ’1’ under the first 50 trees.) Raters with small si tend to have small distances
and rater #11 with his very small distance of 88 conforms well in terms of ri.

Interpretation of the results

1) #1 clearly constitutes an outlier as indicated by the extreme number s1 of marked trees. Nev-
ertheless, as r1 shows he conforms well with the whole group of raters.

2) #6 and #11 show a kind of medium marking activity (the corresponding si are close to s) and
a high degree of conformity with the whole group of raters. Because of the small distances from
the Vorob’ev expectation they may serve as representatives of the whole group of forest managers.

3) The other forest managers show an average behavior.

4) The organizer and trainer of the experiment, forest manager #9, does not take a central place in
Fig. 7 and has a considerable distance δ9 from the Vorob’ev expectation. Rater #7 followed strictly
the rules given by #9 and thus became a marginal figure within the collective of raters. Obviously,
more training is necessary to teach traditional British forest managers how best to apply thinnings
from above.

4. Discussion

This paper shows that set-theoretic methods indeed yield information on the individual rater behav-
ior. The conformity numbers ci and the relative conformity nubers ri for the raters i characterize
the relation of the rating of rater i in comparison to that of all raters. And the Vorob’ev mean
helps to understand more subtle differences in the rating behavior of individual raters.

The results of both the set-theoretic approach and of LCA show similarity in important points.
Both methods suggest that raters #6 and #11 occupy the positions of extreme conformists and
label rater #7 as non-conformist. The set-theoretic approach explains the role of rater #1 better;
he is not only characterized by his high marking activity but also shows a rather conform behavior.
Rater #3 does not play a particular role in the set-theoretic approach in contrast to LCA. Raters
#12 to #15 have similar results with both approaches. Finally, both approaches classify the raters
not named here as ‘medium’. It is interesting that raters #6 and #11, which have largest sensitivity
and specificity in LCA, are the raters with the smallest distance from the Vorob’ev mean, i.e. the
average rater. Perhaps two advantages of the set-theoretic approach in comparison to LCA are its
theoretically simpler approach and its greater suitability.

Clearly, the methods presented in this paper can be generalized in such a way that the raters do not
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assign marks of type ‘1’ or ‘0’, but provide scores instead. Then the item sets can be interpreted
as fuzzy sets (if the scores are between 0 and 1) and the analysis can follow the pattern suggested
in this paper.

The Vorob’ev expectation may be interpreted as a result of a wisdom of crowd approach of psychol-
ogy (Surowiecky, 2004). In this approach, judgements of multiple experts (raters) are aggregated to
obtain results which are closer to a ground truth than single judgements. If estimates of real num-
bers have to be aggregated, a simple aggregation method involves averages of individual experts’
judgements. Other more sophisticated methods were designed for aggregating rankings (Steyvers
et al., 2009; Lee et al., 2014) and solutions of combinatorial problems (Yi et al., 2012). Similarly,
we have aggregated sets to mean sets, generalizing the simple averaging approach. However, it
must be noted that the whole crowd may go astray, as it seems a bit with our forestry example,
where the majority of the group tended not to follow the thinning rules given by the organizer of
the experiment.

Finally, we remark that the empirical Vorob’ev expectation X may have also an additional appli-
cation. It may represent a set of selected items (in the case of our example: trees), as it contains
the most frequently used items in a number suitable to the investigation purpose. Some examples
are:

- Trees finally determined to fell,
- Patients considered ill,
- Candidates elected.
If in such situations the number of items to select is not prescribed a priori, X may be a plausible
solution.

At the end of a tree-marking experiment the question may arise which trees to finally remove. This
decision may be made on a ‘democratic’ basis, using the data of the experiment: just take the
empirical Vorob’ev mean X as the set of trees to fell. This decision will be plausible for every rater,
since X consists of all trees marked by at least L raters, where L is given by equation (8). (In the
case of the forestry experiment discussed in the present paper it is L = 5.)

One may proceed similarly in the case of a medical rating experiment as, for example, in Landis
and Koch (1977a, b) and Stoyan et al. (2018). There the raters are doctors and the items patients,
and giving the mark ’1’ to a patient may mean that the doctor thinks that he has some disease of
interest. While the rating experiment also here primarily aims at studying the agreement of doctors
in making decisions and to find groups of similar behavior, the question may also arise which of
the patients to finally consider as ill. The Vorob’ev mean is then a plausible solution: the set all
patients classified by at least L doctors as ill is considered as really ill.

The Vorob’ev mean can be also used in the election of a council, in a modification of the classical
approval voting system. In this system, r voters can vote for as many candidates as they want from
a set of n candidates and the k candidates with most votes are finally elected. Here k is a number
fixed before the election and known to all voters, i.e., the size of the council. This voting system
was suggested by Brams and Fishburn (1978), and is nowadays often applied, see also Brams and
Taylor (1996) and Rothe (2015).

One may soften this system by not fixing the size of the council a priori, but by allowing it to be
determined by the voters as well. This means: one proceeds as in usual approval voting, but the
number of members of the council is L and the set of candidates elected is the empirical Vorob’ev
mean. If it does not happen that two candidates have the same number of votes, L equals simply
s, the mean number of candidates per ballot, rounded up. And the Vorob’ev mean is the set of
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the L candidates with most votes. (Perhaps rounding up may be replaced by rounding, up or
down.) Voting systems for councils of variable numbers of members are discussed in Faliszewski et
al. (2018), but the system discussed just here is not mentioned there.
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