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Abstract

This study deals with the problem of estimating the unobservable cluster centers for
a special type of Neyman–Scott point processes, in which the cluster sizes (numbers of
members in each cluster) are distributed according to the Poisson distribution. The key
point of the solution is the conversion among different forms of conditional intensities,
λ(t | ·) dt = P{N [t, t + dt) = 1 | ·} = E[N [t, t + dt) | ·], where · represents a σ-algebra
generated by some information from the process N . Some recursive formulae associated
with the filtering gain (information gain represented by the ratio of the likelihood of
the point process when we know more information to the likelihood when we know less)
are derived. These recursive equations can be solved numerically by using Monte Carlo
integration. The proposed method is illustrated by two simulation experiments, a purely
temporal and a multi-type spatiotemporal case.
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1. Introduction

The Neyman–Scott process was used to describe the distribution of larvae by Neyman in
1939 in his paper On a new class of “contagious” distributions, applicable in entomology and
bacteriology. Most people refer this model to Neyman and Scott (1953) or (1958). Later
on, this important model and its modified versions have been widely used in many fields,
for example, in astronomy for the distribution of galaxies (e.g., Neyman and Scott, 1958;
Snethlage et al., 2002; Peebles, 2001), in ecology for the distributions of stands of trees in
natural forests (e.g., Matern, 1971, 1986; Penttinen et al., 1992) and for the distribution
of animals (e.g., Brown and Cowling, 1998), in seismology for modeling earthquake clusters

http://www.jenvstat.org


2 Detection of centers for Neyman–Scott processes

(see Lomnitz and Hax, 1966; Vere-Jones, 1970), in environmental studies (e.g., Barnett,
2005) especially for modeling the rainfall process (e.g., Guttorp, 1996; Cowpertwait, 1991;
Cowpertwait and O’Connell, 1997), and in radiation physics (e.g., Lowen and Teich, 1991).

The statistical inferences in these applications are mostly associated with moment generating
functionals (see, e.g., Diggle, 1983; Kerscher, 2001), moment estimates (see, e.g., Teich 1981;
Lowen and Teich 1991; Cowpertwait, 1991; Brown and Cowling, 1998), K-functions (Dixon,
2002; Waagepetersen, 2007) or nearest-neighboring distances (Stoyan, 1992; Tanaka et al.,
2008), and spectrums (Marrorquin et al., 1995). There have also been many other methods
that are difficult to classify into the above categories. For example, Snethlage et al. (2002)
used random shift to study the two-point correlation of a simple case of Neyman–Scott pro-
cesses. Caears and Rombouts (2000) estimated the parameters for a Neyman–Scott model
by minimizing a χ-squared type objective function related to the sample histogram of ob-
servations. Like most statistical analyses, likelihood-based inference methods are also always
concerned. Lieshout and Baddeley (2001) obtained the likelihood for given observations of a
Neyman-Scott process through Monte Carlo simulations. Castelloe and Zimmerman (2002)
computed the likelihood directly by taking the expectation of all the possible configurations
of the parent process and all the possible linkages between the parents and children, which is
computationally intensive. Different from previous works, we introduce a new filtering tech-
nique for Neyman–Scott processes, with which we can obtain a simpler form of their likelihood
functions, together with estimation of the intensity of cluster centers.

In this paper, we first provide an overview of some concepts associated with the Neyman–Scott
processes or general point processes in Section 2. Section 3 gives the standard form of the
likelihood for a point process in the form of the natural (internal) conditional intensity, which
is the theoretical basis of this study. Section 4 derives the intensities of the Neyman–Scott
point process and cluster-center process, conditioning on the observations of the process of
the cluster members for one-dimensional cases. Sections 5 and 6 extend the methodology to
higher-dimensional cases and cases of multi-type cluster centers, respectively. The method is
illustrated by two numerical examples in Section 7.

2. Definitions and assumptions of Neyman–Scott processes

A point process on the Euclidean space Rd is usually defined as a random counting mea-
sure, i.e., a measurable mapping from the integer-valued measures on the Rd to the abstract
probability space (Ω,F , P ). In this section, we consider the following type of temporal (one-
dimensional) Neyman–Scott processes: the invisible cluster centers are assumed from a sta-
tionary Poisson process N c with a rate λc(t) = µ on the real line, and each cluster has a size
of a Poisson random variable Si of mean A, with the members in the cluster independently
distributed according to a density g(· − u), where u denotes the cluster center location. Such
a Neyman–Scott process N is the superposition of all the in all the clusters. Let G ⊂ F be
any sub-σ-algebra on the abstract probability space. Define the G-conditional intensity of N ,
λ(t | G), by

λ(t | G) dt = E [N(dt) | G] = dE[N(t) | G], (1)

where N(t) = N [0, t) for t > 0 and N(t) = −N [−t, 0) for t ≤ 0 and N(dt) = N [t, t+ dt). In
this paper, we always use the notation N(ds) = N [s, s+ds) to represent the number of events
in N that fall in the infinitesimal interval [s, s+ ds). As the process N is simple, λ(t | G) can
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also be defined by

λ(t | G) dt = P {N([t, t+ dt) = 1 | G} . (2)

From the assumption that the occurrence of an event in the process N only depends on
the locations of the parent events (cluster centers) from N c and does not depend on the
occurrences of any other events in N , for any σ-algebra K, if G ⊆ K ⊆ σ(G ∪ σ(N \ {t})),
then

λ(t | K) = λ(t | G) = A
∑

i:ui∈Nc

g(t− ui) = A

∫
R
g(t− u)N c(du), (3)

where A is the average number of cluster members produced in an arbitrary cluster center,
and g(· − u) is the probability density for the occurrence times of cluster members that are
generated by a cluster center event at time u.

3. Likelihoods

In the evaluation of the likelihood of a point process, the conditional intensity λ(t | Ht) =

E [dN(t) | Ht] /dt of a point process N plays an important role, where Ht is the σ-algebra
generated by the events in N that occur before t but not including t (e.g., Daley and Vere-
Jones, 2003, Chap. 7). In this article, we call λ(t | Ht) the natural conditional intensity or the
internal conditional intensity of N . Suppose that {ti : i = . . . , 0, 1, . . .} is the configuration
of N . The likelihood of N in a given interval [S, T ] can be expressed through the natural
conditional intensity by

L(N, [S, T ],Ht) = exp

[∫
[S, T ]

log λ(t | Ht)N(dt)−
∫
[S, T ]

λ(t | Ht) dt

]
.

= exp

[
−
∫
[S, T ]

λ(t | Ht) dt

] ∏
i: ti∈N [S, T ]

λ(ti | Hti). (4)

The above likelihood is indeed a likelihood conditional on a fixed history HS , i.e., L(H[S,T ] |
HS), when H[S,T ] is the σ-algebra that consists of the information generated by N in the
time interval [S, T ]. Unfortunately, we cannot observe the history of the point process to the
infinite past, but only starting from a certain time point. Assume that this starting time of
an observation is 0. Denote by Rt the σ-algebra generated by the observed events. It is clear
that Rt ⊂ Ht. Assume that S > 0, integrating over all the possibilities of the history before
0 on both sides in (4), the expected likelihood becomes

L(N, [S, T ],Rt) = exp

[∫
[S, T ]

log λ(t | Rt)N(dt)−
∫
[S, T ]

λ(t | Rt) dt

]
.

= exp

[
−
∫
[S, T ]

λ(t | Rt) dt

] ∏
i: ti∈N [S, T ]

λ(ti | Rti). (5)

If we set S = 0, the above likelihood is a complete likelihood.
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4. Filtering formulae

To obtain the conditional intensity of a Neyman–Scott process N conditional on the informa-
tion from observed events, λ(t | Rt), take the expectation of λ(t | σ(G ∪Rt)) conditioning on
Rt, i.e.,

λ(t | Rt) = E [λ(t | σ(G ∪ Rt)) | Rt]
= E [λ(t | G) | Rt] (from (3))

= E

[∫
R
Ag(t− s)N c(ds)

∣∣∣∣ Rt]
= A

∫
R
g(t− s) E [N c(ds) | Rt]

= A

∫
R
g(t− s)P {N c(s, s+ ds) = 1 | Rt}

= A

∫
R
g(t− s)λc(s | Rt) ds. (6)

In the above equation, λc(s | Rt) ds is the probability that a cluster center falls in [s, s+ ds),
given the observations of N on [0, t). Based on the Bayesian formula, we can derive formally

λc(s | Rt) ds = P{N c(ds) = 1 | Rt}

=
P{N c(ds) = 1 ∧Rt}

P{Rt}

=
P{Rt | N c(ds) = 1}P{N c(ds) = 1}

P{Rt}

= µds
P{Rt | N c(ds) = 1}

P{Rt}
(by λc(s) = µ). (7)

In the above, the quantity

G(s | Rt) =
P{Rt | N c(ds) = 1}

P{Rt}
(8)

is called the filtering gain. Note that P{Rt} is another notation of the likelihood of the
observations in [0, t). The filtering gain is the ratio of the likelihood of the observations
before t given a cluster center at s to the corresponding likelihood of the observation but not
conditional on the occurrence of a point in N c at s. That is,

G(s | Rt) =
L(N, [0, t],Ru ∧N c(ds) = 1)

L(N, [0, t],Ru)

=
e−

∫ t
0 λ(u|N

c(ds)=1,Ru) du
∏
i: ti∈[0, t] λ(ti | N c(ds) = 1,Rti)

e−
∫ t
0 λ(u|Ru) du

∏
i: ti∈[0, t] λ(ti | Rti)

= e−
∫ t
0 [λ(u|N

c(ds)=1,Ru)−λ(u|Ru)] du
∏

i: ti∈[0, t]

λ(ti | N c(ds) = 1,Rti)
λ(ti | Rti)

. (9)
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Similar to (6),

λ(t | N c(ds) = 1,Rt) = E

[∫
R
Ag(t− u) dN c(u)

∣∣∣∣ N c(ds) = 1,Rt
]

= A

∫
R\ds

g(t− u) E [dN c(u) | N c(ds) = 1,Rt] +Ag(t− s)

= A

∫
R
g(t− u)λc(u | N c(ds) = 1,Rt) du+Ag(t− s). (10)

In addition, similar to (7),

λc(s1 | Rt, N c(ds) = 1) ds

= P{N c(ds1) = 1 | Rt, N c(ds) = 1}

=
P{N c(ds1) = 1 ∧Rt | N c(ds) = 1}

P{Rt | N c(ds) = 1}

= µds
P{Rt | N c(ds1) = 1, N c(ds) = 1}

P{Rt | N c(ds1) = 1}
. (by λc(s) = µ)

= µds exp

{
−
∫ t

0
[λ(u | N c(ds1) = 1, N c(ds) = 1,Ru)− λ(u | N c(ds) = 1,Ru)] du

}
×

∏
i: ti∈[0, t]

λ(ti | N c(ds1) = 1}, N c(ds) = 1,Rti)
λ(ti | N c(ds) = 1,Rti)

. (11)

Similarly, we can obtain the following recursive formulae:

λ(t | N c(ds1) = · · · = N c(dsk) = 1,Rt)

= A

∫
R
g(t− sk+1)λ

c(sk+1 | N c(ds1) = · · · = N c(dsk) = 1,Rt) dsk+1 +A
k∑
i=1

g(t− si);

(12)

λc(sk+1 | Rt, N c(ds1) = · · · = N c(dsk) = 1)

= µ exp

{
−
∫ t

0

[
λ(u | N c(ds1) = · · · = N c(dsk+1) = 1,Ru)

− λ(u | N c(ds1) = · · · = N c(dsk) = 1,Ru)

]
du

}

×
∏

i: ti∈[0, t]

λ(ti | N c(ds1) = · · · = N c(dsk+1) = 1,Rti)
λ(ti | N c(ds1) = · · · = N c(dsk) = 1,Rti)

. (13)

For numerical computation, such recursions can be stopped at a certain step, say k, by the
approximation

λ(t | N c(ds1) = · · · = N c(dsk+1) = 1,Rt)

≈ A

∫
R
g(t− u)λc(u | N c(ds1) = · · · = N c(dsk) = 1,Rt) du+A

k+1∑
i=1

g(t− si). (14)

We can then substitute (14) sequentially to (13) and (12), and the recursion is solved.
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If we stop the recursion at k = 0, i.e., starting from (10) and (6), reasonable (first-order)
precision can be provided by

λ(t | N c(ds) = 1,Rt) ≈ A

∫
R
g(t−u)λc(u | Rt) du+Ag(t−s) = λ(t | Rt)+Ag(t−s).. (15)

Substituting (15) into (9),

G(s | Rt) ≈ e−A
∫ t
0 g(u−s) du

∏
i: ti∈N [0, t)

[
1 +

Ag(ti − s)
λ(ti | Rti)

]
. (16)

Considering (16), (8), and (11),

λc(s | Rt) ≈ µ e−A
∫ t
0 g(u−s) du

∏
i: ti∈N [0, t)

[
1 +

Ag(ti − s)
λ(ti | Rti)

]
. (17)

Substituting the above equation into (6), we have

λ(t | Rt) ≈ Aµ
∫
R
g(t− s) e−A

∫ t
0 g(u−s) du

∏
i: ti∈N [0, t)

[
1 +

Ag(ti − s)
λ(ti | Rti)

]
ds, (18)

which can be used to obtain the conditional intensity of the process recursively. The initial
conditions for the above equations are

λc(s | Rt) = λc(s) = µ, t ≤ 0 (19)

and
λ(t | Rt) = µA, t ≤ 0, (20)

because Rt contains null information for t ≤ 0.

In summary, (17) and (18) give, respectively, the occurrence rates of clustering members and
cluster centers in a Neyman–Scott process conditional on the observations of the clustering
members in the process.

5. Multidimensional cases

The above results can be easily extended to multidimensional cases such as spatiotemporal
and marked Neyman–Scott processes. Consider a Neyman–Scott process N in R×Rd (d ≥ 1).
We suppose that its cluster-center process N c has an intensity

λc(t, x | K) = µ(t, x), (21)

where x represents that the spatial or the mark component, and the intensity function of N
conditional on the σ-algebra G generated by the configuration of N c is

λ(t, x | G) = A

∫
R×Rd

g(t− s, x− y)N c(ds× dy). (22)

Denote the σ-algebra generated by the observation of N before t but not including t by Rt.
In practice, the observation of N can only be started from a certain time, which is assumed
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to be 0 here, and for each time the observation is limited within a bounded region S(t). For
simplification, we use D(t) =

⋃
u∈[0,t)({u} × S(u)), i.e., the spatiotemporal range that the

observation covers. With the above notation, the conditional intensity of N given Rt is

λ(t, x | Rt) = E[λ(t, x | G,Rt) | Rt]

= E

[
A

∫
R×Rd

g(t− s, x− y)N c(ds× dy)

∣∣∣∣ Rt]
= A

∫
R×Rd

g(t− s, x− y) E [N c(ds× dy) | Rt]

= A

∫
R×Rd

g(t− s, x− y)λc(s, y | Rt) `(ds× dy). (23)

With similar calculations as for the one-dimensional case,

λc(s, y | Rt) = µ(s, y)G(s, y | Rt), (24)

where the filtering gain

G(s, y | Rt) =
P{Rt | N c([s, s+ ds)× [y, y + dy)) = 1}

P{Rt}
, (25)

i.e., the ratio of the likelihood for the observation before t given a cluster center occurring at
(s, y) and the likelihood for the same observation without such a condition. Thus, the filtering
gain can be written in full as follows:

G(s, y | Rt) = exp

{
−
∫
D(t)

[λ(u, z | N c(ds× dy) = 1,Ru)− λ(u, z | Ru)] `(du× dz)

}

×
∏

i: (ti,xi)∈N(D(t))

λ(ti, xi | N c(ds× dy) = 1,Rti)
λ(ti, xi | Rti)

(26)

≈ exp

{
−A

∫
D(t)

g(u− s, z − y) `(du× dz)

}

×
∏

i: (ti,xi)∈N(D(t))

[
1 +

Ag(ti − s, xi − y)

λ(ti, xi | Rti)

]
. (27)

The initial conditions for the above equations are

λc(u, y | Rt) = λc(u, y) = µ(t, y), t ≤ 0 (28)

and

λ(t, x | Rt) = A

∫
R×Rd

g(t− s, x− y)µ(s, y) `(ds× dy), t ≤ 0, (29)

because Rt contains null information for t ≤ 0.

6. Multi-type Neyman–Scott processes

The problem of parameter estimation of multi-type Neyman–Scott processes was introduced
by Tanaka et al. (2007). In a multi-type Neyman–Scott process, the cluster centers are
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classified into two or more classes, and different types of centers have different average numbers
and different location distributions of cluster members. For simplification, we only give the
solution for the one-dimensional two-type Neyman–Scott processes, and higher-dimensional
processes with more than two types of cluster centers can be solved in the same way.

Suppose that the cluster centers are classified as either Type I or Type II. The process N c
1

of Type I cluster centers is a Poisson process with a rate µ1(t) and the process N c
2 of Type

II cluster centers is also a Poisson process with a rate µ2(t). The intensity of the children
process N , given all the locations of events in N c

1 and N c
2 , is

λ(t | G1,G2) = A1

∫
R
g1(t− s)N c

1(ds) +A2

∫
R
g2(t− s)N c

2(ds), (30)

where G1 and G2 are the σ-algebra generated by N c
1 and N c

2 , respectively. Similar to the one-
dimensional case in Section 4, the conditional intensity of N given the observation history Rt,
i.e., the σ-algebra generated by N up to time t but not including t, is

λ(t | Rt) = E[λ(t | G1,G2) | Rt]

= A1

∫
R
g1(t− s) E[N c

1(ds) | Rt] +A2

∫
R
g2(t− s) E[N c

2(ds) | Rt]

= A1

∫
R
g1(t− s)λc1(s | Rt) ds+A2

∫
R
g2(t− s)λc2(s | Rt) ds. (31)

Again, we have

λc1(s | Rt) = µ1(s)G1(s | Rt) and λc2(s | Rt) = µ2(s)G2(s | Rt), (32)

where G1 and G2 are the filtering gains for N c
1 and N c

2 at s given the observation history up
to t, respectively. It is easy to derive

G1(s | Rt) =
P{Rt | N c

1(ds) = 1}
P{Rt}

= exp

{
−
∫ t

0
[λ(u | Ru, N c

1(ds) = 1)− λ(u | Ru)] dt

}
×

∏
i: ti∈N [0,t)

λ(ti | Rti , N c
1(ds) = 1)

λ(ti | Rti)
. (33)

Using the first-order approximations λc1(u | Rt, N c
k(ds) = 1) ≈ λc1(u | Rt) and λc2(u |

Rt, N c
k(ds) = 1) ≈ λc2(u | Rt), where k is either 1 or 2, we can obtain

λ(t | Rt, N c
1(ds) = 1) ≈ A1

∫
R
g1(t− u)λc1(u | Rt) du+A2

∫
R
g2(t− u)λc2(u | Rt) du

+A1 g1(t− s) (34)

and

λ(t | Rt, N c
2(ds) = 1) ≈ A1

∫
R
g1(t− u)λc1(u | Rt) du+A2

∫
R
g2(t− u)λc2(u | Rt) du

+A2 g2(t− s). (35)
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Substitute the above two equations into (33),

G1(s | Rt) ≈ exp

{
−A1

∫ t

0
g1(u− s) du

} ∏
i: ti∈N [0,t)

[
1 +

A1 g1(ti − s)
λ(ti | Rti)

]
. (36)

Similarly

G2(s | Rt) ≈ exp

{
−A2

∫ t

0
g2(u− s) du

} ∏
i: ti∈N [0,t)

[
1 +

A2 g2(ti − s)
λ(ti | Rti)

]
. (37)

We can use the above two equations and (32) to compute the conditional intensities of the
processes of the cluster centers from each type.

7. Examples

7.1. One-dimensional cases

To illustrate the above procedures, we simulate a Neyman–Scott process with the cluster-
center process unobservable. We first simulate a Poisson process with a rate of 0.5 on the
interval [−1000, 1000] as the cluster-center process. For each event in the cluster-center pro-
cess, the total number of its children is a Poisson random variable of mean 3, and their
locations are distributed according to a normal density centered at the cluster center with a
standard deviation of 0.5. We assume the process is observed in the interval [0, 100].

The conditional intensity is calculated by using (18) and Monte Carlo integration. That is, for
each t, generate K = 1,000,000 samples, s1, s2, . . . , sK , of s according to the density g(t− s),
then

λ(t | Rt) ≈
Aµ

K

K∑
j=1

G(t′i | Rt), (38)

where G(s | Rt) is calculated based on (16). Once the conditional intensity λ(ti | Rti) at the
occurrence times of each observed event is calculated, λc(s | Rt) can be easily obtained by
using (17).

The outputs are shown in Figure 1. We can make the following observations.

1. The conditional intensity λ(t | Rt) of the process is similar in appearance to the internal
conditional intensity of the epidemic type aftershock sequence (ETAS) model (see Ogata,
1988) or Hawkes’ process (Hawkes, 1977). This is because, in (18), λ(t | R) is continuous
between the occurrence times of two adjacent events and takes a jump at the occurrence
of each new event.

2. We can imagine that the expected rate of the cluster center process conditioning on
the previously observed events, λc(t | Rt), takes a similar shape by replacing s in (17)
with t. Unlike the internal conditional intensity of the ETAS model or Hawkes’ process,
which is additive, λc(t | Rt) is log-additive.

3. The conditional intensity λc(t | R100) in Figure 1(d) gives an estimate of the occurrence
of a cluster center at t, when the observation of the Neyman–Scott process in [0, 100] is
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Figure 1: Channel (a) gives the locations of points in the observation period [0, 100]. Channel
(b) gives the conditional intensity λ(t | Rt) calculated by using (18). Channel (c) gives the
locations of unobserved clusters. Channel (d) gives the intensity of the process of cluster
centers conditional on all the observation data of N in the period [0, 100], i.e., λc(t | R100).

known. When t < 0 or t > 100, its value is almost the same as µ because no observation
data are available near such times. In [0, 100], it grows high near the occurrences times
of cluster centers and drops to low levels when cluster centers are absent. These results
imply that the proposed filtering method provides good estimates of the unobserved
centers.

7.2. Multi-type two-dimensional cases

Let us consider a more complicated example. Assume that there are two types of cluster
centers from Poisson point processes, N c

1 and N c
2 , with rates of 0.03 and 0.01, respectively.

The observation time–space window is a rectangle (0, 200)× (0, 100). We set the parameters
A1 = 10 and A2 = 30. The probability densities for the occurrence times and locations of
cluster members are

g1(t, x) =
1

8π
√

2
exp

[
− t

2

8
− x2

32

]
(39)

and

g2(t, x) =
12

π

1

16 + t2
1

9 + x2
. (40)

The simulation of N , N c
1 , and N c

2 are illustrated in Figure 2(a).

For each (t, x), generate K1 samples, (s′j , x
′
j), j = 1, . . . ,K1, according to the density of
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g1(s
′ − t, x′ − x) and K2 samples (t′j , y

′
j), j = 1, . . . ,K2, according to g2(t

′ − t, y′ − x), then

λ(t, x | Rt) =
A1 µ1
K1

K1∑
j=1

G1(s
′
i, x
′
i | Rt) +

A2 µ2
K2

K2∑
j=1

G2(t
′
i, y
′
i | Rt), (41)

where

G1(s
′, x′ | Rt) ≈ exp

{
−A1

∫ 100

0

∫ t

0
g1(u− s′, y − x′) dudy

}
×

∏
i: ti∈N [0,t)

[
1 +

A1 g1(ti − s′, xi − x′)
λ(ti | Rti)

]

and

G2(t
′, y′ | Rt) ≈ exp

{
−A2

∫ 100

0

∫ t

0
g2(u− t′, y − y′) dudy

}
×

∏
i: ti∈N [0,t)

[
1 +

A2 g2(ti − t′, xi − y′)
λ(ti | Rti)

]
.

We implemented the computation in R. Figure 2(b) gives the contour image of λ(t, x | Rt)
on a logarithmic scale. We can see that before the observation starts, i.e., when t < 0,
λ(t | Rt) takes its unconditional expectation µ1A1 + µ2A2, because there is no observational
information that can be used in predicting the occurrence of future events of N . Once an event
is observed, λ(t | Rt) is updated by an increment meaning that the possibility (risk) that one
or more events are following is increased. Such an “exciting” effect decays with distance and
time. Figure 2(c) shows the estimated intensity of the unobserved cluster-center process N c

1 ,
given that the locations and times of events from N in the space–time window. The locations
and times of N c

1 events and neighborhoods are marked by high intensities of λc1(t, x | R200).
It is remarkable that λc1(t, x | R200) also has high values around the times and locations of
N c

2 events. This is not surprising, as a cluster produced by an N c
2 event has a heavier tail

decaying in space–time and a larger number of members, which is similar to the overlapping
of clusters produced by several N c

1 events if they are close to each other. Such a phenomenon
does not appear in Figure 2(d). High values of λc2 exist only around the locations and times
of unobserved N c

2 events but not N c
1 events. In summary, λ(t, x | Rt) gives the predicted

risk of an event occurring in N in the very near future and nearby, and λc1(t, x | R200) and
λc2(t, x | R200) show their good abilities in estimating the locations of corresponding types of
unobserved cluster centers.

8. Concluding remarks

Compared with the existing inference methods for Neyman–Scott processes, this paper has
introduced a more natural approach of inference to different cases of this kind of processes,
including higher-dimensional and multi-type cases. All the conditional intensities in this paper
can be written in the form

λ(t | ·) d = P{N [t, t+ dt) = 1 | ·} = E[N [t, t+ dt) | ·], (42)
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Figure 2: (a) Locations of simulated points (dots), Type I cluster centers (+’s) and Type
II cluster centers (×). (b) Left-conditional intensity λ(t, x | Rt) with simulated points in N
marked by small circles. (c) Estimated intensity for the Type I cluster process (+), λc1(t |
R200). (d) Estimated intensity for the Type II cluster process (×), λc2(t | R200). The rectangle,
[0, 200]× [0, 150], in each panel represents the window of observations.
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where · represents a wildcard σ-algebra generated by some information associated with the
process N . For example, λ(t | Rt) can be used for real-time prediction of future events and for
calculating the likelihood, λ(t, · | Rt+s), s > 0, gives the re-evaluation of risk at time t when
more information is known, and λc(t, x | R) provides an estimate of the locations of cluster
centers given the observational information contained in R. The core of this method is the
recursive formulae associated the filtering gain (information gain represented by the ratio of
the likelihood of the point process when we know more information to the likelihood when we
know less). In this study, we have discussed both the temporal and spatiotemporal/marked
cases. For purely spatial Neyman–Scott processes, the solution can be obtained by simply
regarding one of the axes as the time axis and then apply the same algorithm as in Section 5.
Numerical solution of the above recursions can even be implemented in a computer language
as slow as R with sufficient precisions and acceptable computational times (complexity).
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