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Abstract

A simulation study is implemented to study estimators of the covariance structure
of a stationary Gaussian spatial process and a spatial process with t-distributed mar-
gins. The estimators compared are Gaussian restricted maximum likelihood (REML) and
curve-fitting by ordinary least squares and by the nonparametric Shapiro-Botha approach.
Processes with Matérn covariance functions are considered and the parameters estimated
are the nugget, partial sill and practical range. Both parametric and nonparametric boot-
strap distributions of the estimators are computed and compared to the true marginal
distributions of the estimators.

Gaussian REML is the estimator of choice for both Gaussian and t-distributed data
and all choices of the Matérn covariance structure. However, accurate estimation of the
Matérn shape parameter is critical to achieving a good fit while this does not affect the
Shapiro-Botha estimator. The parametric bootstrap performed well for all estimators
although it tended to be biased downward. It was slightly better than the nonparametric
bootstrap for Gaussian data, equivalent to it for t-distributed data and worse overall for
the Shapiro-Botha estimates.

A numerical example, obtained from environmental monitoring, is included to illustrate
the application of the methods and the bootstrap.

Keywords: Gaussian random field, variogram, restricted maximum likelihood, variogram curve-
fitting, Shapiro-Botha estimation, spatial bootstrap.
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1. Introduction

Estimation of covariance parameters through the variogram is usual practice in spatial anal-
ysis. In addition to assessing spatial dependence, the variogram is also commonly used for
spatial prediction i.e. kriging. Standard methods for estimating the variogram include ob-
taining an empirical variogram by Matheron’s method or the variogram cloud and then fitting
this empirical variogram by a theoretical variogram model. Diggle and Ribeiro (2007, Section
5.3.3) argue against the use of the empirical variogram for inference and they favour esti-
mation methods based on the likelihood function. Such estimation methods are most fully
developed for spatial Gaussian linear models. A third method that has been found popular
is the Shapiro-Botha nonparametric estimator of the variogram that avoids specification of a
variogram form (Shapiro and Botha 1991).
However, even in likelihood approaches, properties of estimators, such as standard errors,
although theoretically available via the observed Fisher information in the case of likelihood
estimation, are not available in practice. Diggle and Ribeiro (2007, Section 5.4.2) report that
quadratic approximations to the log-likelihood surface are often poor and standard errors
obtained from the Hessian matrix unreliable. In addition Warnes and Ripley (1987) give
examples of spatial Gaussian processes where the profile likelihood of covariance parameters
estimated by maximum likelihood can be multimodal. The bootstrap can be employed to
provide properties of estimates for all methods - likelihood and variogram curve-fitting. The
performance of the bootstrap in this context needs to be explored and this will be done in a
simulation study. Bonat and Ribeiro (2016) argue that inferences based on standard errors
do not make sense when analyzing small data sets, especially for the covariance parameters.
The profile likelihoods may be highly asymmetric. Therefore percentiles of the bootstrap
distribution will be used to characterize these profile likelihoods in the simulation study.
Zimmerman and Zimmerman (1991) carry out a comparison of spatial variogram estimators
that includes curve-fitting methods to an empirical variogram, maximum likelihood and re-
stricted maximum likelihood. Only Gaussian data are considered and two variogram models
- linear and exponential. The focus is on kriging predictors and standard errors are obtained
by a plug-in method. No standard errors for the parameters of the variogram model are pro-
vided. Tang, Schucany, Woodward, and Gunst (2007) propose a parametric spatial bootstrap,
and in a simulation study, the coverage of confidence intervals from the proposed method is
estimated and compared to an existing spatial bootstrap method proposed by Solow (1985).
Variogram models are fit using weighted least squares curve-fitting estimators. Confidence
intervals for the mean of the process only are considered.
Here we extend both of these studies by considering a wide class of variogram models - the
Matérn family, processes with t-distributed marginals as well as Gaussian and three estima-
tors of the variogram. Our focus is on estimation of variogram parameters and percentiles of
the marginal distributions of these estimators.
The paper is organized as follows. Section 2 provides a theoretical background and introduces
the variogram estimators and two bootstrap methods. Section 3 describes the simulation study
and gives the results and summary of the results. Section 4 describes an application example
and conclusions are given in Section 5.
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2. Theoretical background

2.1. The variogram and the Matérn family

The variogram of a spatial stochastic process {S(s) : s ε R2} with mean µ(s) at location s,
is the function

V (s, s′) =
1

2
VAR(S(s)− S(s′))

and the covariance function is denoted as γ(s, s′), which for a stationary isotropic Gaussian
process is γ(u) where u = ||s − s′||. The variance of a stationary process is a constant σ2 =
γ(0). The correlation function is then defined as ρ(u) = γ(u)/σ2. In this case the variogram
simplifies to V (u) = σ2(1−ρ(u)) and can also be defined as V (u) = 1/2E[(S(s)−S(s−u))2].
The Matérn family of correlation functions is given by

ρ(u) = [2κ−1Γ(κ)]−1(u/φ)κKκ(u/φ) (1)

in which Kκ(·) denotes a modified Bessel function of the second kind of order κ, φ > 0 is
a scale (range) parameter with the dimension of distance and κ > 0, is a shape parameter
determining the analytic smoothness of the underlying process S(s). We denote a set of
geostatistical data by (si, zi), i = 1, . . . , n where zi is the measured value associated with
location si, i.e. Zi = S(si)+ei, i = 1, . . . , n where the ei are mutually independent with mean
0 and variance τ2 called the nugget effect. Then Z(s) has correlation function

Corr(Z(s), Z(s′)) =

{
1, s = s′

σ2/(σ2 + τ2)ρ(||s− s′||), s 6= s′

where ρ(·) is the correlation function of S(s). In this case σ2 is called the partial sill while
σ2 + τ2 is called the sill.
In what follows attention is restricted to stationary isotropic spatial processes only. We
consider estimators of the nugget, partial sill and range.

2.2. Estimating spatial covariance parameters by curve-fitting the empirical
variogram

Two widely used empirical variograms are the Matheron and variogram cloud. We consider
here estimation from the variogram cloud only, as Jin and Kelly (2017) recommend. Given
any two locations si and sj in R2, let

hij = si − sj ; Tij = 1/2(Z(si)− Z(sj))
2

then

E(Tij) = V (hij , θ),

with θ denoting the set of covariance parameters and V denoting the variogram. Thus gener-
alized estimating equations (GEE) estimates of V with working independence structure can
be calculated as the ordinary least squares estimates in the model

Tij = V (hij , θ) + δij , δij ∼ i.i.d.(0, φ)
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Schabenberger and Gotway (2005, chap. 4). We note that this is the same as fitting the
variogram model by ordinary least squares to the variogram cloud consisting of {1/2(Z(si)−
Z(sj))

2}. Based on the results of Zimmerman and Zimmerman (1991) and Jin and Kelly
(2017), weighted least squares curve-fitting was not considered here.

2.3. Estimating spatial covariance parameters by likelihood methods

Here we assume a model
Z ∼ N(Dβ, σ2R(φ) + τ2I)

where D is an n×p matrix of covariates, β is the corresponding vector of regression parameters
and R depends on a scalar or vector-valued parameter φ. The log-likelihood function is

L(β, τ2, σ2, φ) = −0.5{n log(2π)+log{|(σ2R(φ)+τ2I)|}+(y−Dβ)T (σ2R(φ)+τ2I)−1(y−Dβ)},

maximization of which yields the maximum likelihood (ML) estimates of the model parame-
ters. A variant of maximum likelihood estimation is restricted maximum likelihood (REML)
estimation as described in Diggle and Ribeiro (2007, chap.5). This can reduce the small-
sample bias of ML estimates. This is done using the geoR (Ribeiro Jr. and Diggle 2001)
and geostatsp (Brown 2015) packages in R (R Development Core Team 2012) and parameter
values are found by numerical optimization using the R function optim. In general the algo-
rithm converged as it was called with default options that were equal to the model parameter
values. In theory standard errors may be obtained from the information matrix. However
the information matrix was rarely available, requiring inversion of large covariance matrices,
and in addition can be unstable as outlined in the Introduction, so variability is assessed by
bootstrap methods.

2.4. Estimating spatial covariance parameters by a nonparametric Shapiro-
Botha fit to the empirical variogram

Here one firstly computes binned estimated variogram values, denoted by ψ̂k = ψ̂(hk), k =
1, . . . ,K, where K is the total number of bins. One can use the classical Matheron estimator

ψ̂(hk) = 1/2|N(hk)|−1
∑
N(hk)

(Z(sj)− Z(sl))
2

where N(hk) is the set of pairs (sj , sl) a lag distance hk apart. However, this may not
yield a non-negative definite estimate of the variogram functions. Shapiro and Botha solve
this by considering a certain class of nonparametric isotropic non-negative definite functions G
(Shapiro and Botha 1991), and performing the fit by weighted least squares through quadratic
programming. Here this is done using the npsp package in R (Fernández-Casal 2016) using
the methods of Fernández-Casal, González-Manteiga, and Febrero-Bande (2003). The fit is
done using a weighted least squares criterion, finding the function ḡ ε G such that:

K∑
k=1

wk[ψ̂k − ḡ(rk)]
2 = inf

gεG

K∑
k=1

wk[ψ̂k − g(hk)]
2.

It is shown by Cressie (1985) that approximately optimal (in a certain statistical sense) weights
are given by wk = nkg(hk)

−2 where nk is the number of pairs used to estimate the variogram
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at the kth lag. The procedure is iterative, with wk = 1 (OLS) used for the first step and with
the weights recalculated at each iteration until convergence: There is an option in the npsp
package to make the fitted model monotone by the use of additional constraints, and thus
estimates of the sill and practical range are readily available.

2.5. Bootstrap methods

Proceeding from the estimation of the covariance parameters, nugget, sill and range, bootstrap
methods provide estimates of the percentiles of the marginal distributions of the estimators.

Spatial bootstrap (SB)
Direct application of the nonparametric bootstrap method fails to provide valid resamples
whenever there is correlation in either time series or spatial data. When this bootstrap is
applied to correlated data, it randomizes either the residuals or the observations and destroys
the correlation pattern inherent in the joint distribution. Solow (1985) proposes a spatial
bootstrap (SB) method to obtain spatial re-samples from the original data. He calculates the
predicted spatial error process as

δ̂ = {Z(s1)− µ̂(s1), . . . , Z(sn)− µ̂(sn)}

where n is the sample size and µ̂(s) estimates the mean. Processes with constant mean
only were considered. The variogram or covariance matrix is estimated from δ̂ and the SB
method is based on the Cholesky decomposition given by

∑̂
SB = L̂SBL̂

T
SB where L̂ is a

lower triangular n×n matrix. The SB method then uses the Cholesky decomposition matrix
inverse, L̂−1 to de-correlate the spatial error sequence

(ε̂1, ε̂2, . . . , ε̂n) ≡ ε̂ = L̂−1SB δ̂

and then centers the ε̂ to obtain

ε̃i = ε̂i −
n∑
j=1

ε̂j

for i = 1, . . . , n. The de-correlated and centered residuals ε̃1, ε̃2, . . . , ε̃n are bootstrapped to
provide the resampled residuals ε∗SB = (ε∗1, . . . , ε

∗
n). The SB resample is obtained by trans-

forming to re-correlate the bootstrapped residuals

Z∗SB = µ̂+ L̂SBε
∗
SB. (2)

However, the SB method may not be valid because the predicted spatial error process δ̂ may
not retain the same correlation structure as the original spatial data. Confidence intervals
based on SB tend to suffer from significant under coverage because the de-correlated residuals
are not sufficiently uncorrelated in practice (Tang et al. 2007).

Parametric spatial bootstrap (PSB)
Tang et al. (2007) introduce a parametric spatial bootstrap (PSB) method. They adapt a
parametric approach in Sjöstedt-de Luna and Young (2003) and the spatial bootstrap method
in Solow (1985) to obtain valid resamples from a Gaussian process or a lognormal process.
This method accounts for the spatial correlation in the data by estimating the correlation
structure and then imposing it in the re-samples. The proposed method offers a correct way
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to obtain confidence limits for a statistic T̂ . The parametric spatial bootstrap (PSB) approach
begins with a random sample of uncorrelated errors:

ε∗PSB = (ε∗1, ε
∗
2, . . . , ε

∗
n) where ε∗j ∼ N(0, 1) for j = 1, . . . , n.

The variogram parameter θ̂SB and resulting covariance matrix
∑̂
SB are estimated from the

residuals of the original spatial data Z(s). Next, the spatial re-samples are transformed by

Z∗PSB = µ̂+ L̂SBε
∗
PSB (3)

where L̂SB is the Cholesky decomposition of
∑̂
SB. The statistic of interest, T̂ ∗, is calculated

from Z∗PSB. The above procedures are repeated B times to estimate the sampling distribution
of T̂ .
This PSB method does not obtain the errors ε∗ by de-correlating the spatial (or spatio-
temporal) error process as in the SB algorithm. Instead, the errors are independently gen-
erated from a standard normal distribution and transformed. More importantly, because δ̂
may not retain the original spatial (or spatio-temporal) structure, the covariance matrix is
estimated directly from the original data. The theoretical foundation is given in Sjöstedt-de
Luna and Young (2003).

3. Simulation study.

3.1. Simulation description

A sample of 100 points was taken uniformly distributed over the square [0, 1] × [0, 1]. There
is considerable variance among authors as to what is an adequate sample size for variogram
estimation. This is discussed in Jin and Kelly (2017) and as in that study a sample of 100
is considered here. This also reflects the fact that there are now many applications including
epidemiology and environmental data, for example, where sample sizes are relatively small.
Data sets were generated with Gaussian data, Z(si), i = 1, . . . , n, with constant mean using
one of the Matérn variogram models described in Section 2. Models were chosen whereby the
practical range was equal to one half the maximum distance between the points as recom-
mended in Jin and Kelly (2017). The practical range is defined as distance u at which the cor-
relation function of S(s) process is 0.05. In each case the practical range was 0.5753. The values
of the range parameter φ were adjusted so that all variograms had the same practical range.
The practical range is approximately 3φ, 3.9985φ and 6.4171φ with κ = 0.5, 1.0 and 3.0, where
κ is the smoothness parameter of the Matérn variogram. κ = 0.5 corresponds to a process
that is not differentiable while κ = 1.0 or 3.0 reflect increasing smoothness. These κ values
are suggested in Diggle and Ribeiro (2007, Section 5.4).
The partial sill (σ2) was set to 1 and a nugget (τ2) of 0 or 1/3 was chosen. In all cases the
nugget was estimated rather than assumed fixed. The change in nugget:sill ratio expresses
different degrees of continuity in the spatial variation of the simulated data.
As Zimmerman and Zimmerman (1991) state, a comprehensive study of variogram estima-
tors requires comparison for several variogram models and true values of the parameters. The
simulation study was extended to include a model with t-distributed margins instead of Gaus-
sian. Note that if Z = (Z1, . . . , Zn) is an independent random sample from any distribution
with zero mean and unit variance then Y = HZ has zero mean and covariance matrix HHT ,
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irrespective of the marginal distribution of the Zi (Diggle and Ribeiro 2007, chap.5). Thus
data with t-distribution (10 df) marginals but a specified Matérn covariance structure were
generated and fitted.
For each variogram and set of variogram parameters, 500 independent data sets were gener-
ated. For each generated data set, we obtained estimates of τ2, σ2 and φ, and from these we
computed the quantiles of their marginal distributions i.e. we used the simulated distribution
to approximate the true marginal distributions. Three estimation methods were considered:
REML with Gaussian likelihood, variogram fitting to the variogram cloud by OLS and non-
parametric variogram fitting by Shapiro-Botha.
For each generated data set, 500 bootstrap samples were obtained as described in Section 3
using the PSB method and the quantiles of the bootstrap distribution calculated based on
B=500 samples. We then found the median of these bootstrap quantiles over simulations. In
the case of data with t-distribution marginals, the SB was also applied.
The simulation study plan is shown in Table 1. The Matérn × 3 indicates three values of κ
were considered κ = 0.5, 1.0 and 3.0.

Table 1: The simulation study plan

Data Theoretical Nugget Fitted variogram Variogram fit Bootstrap
Variogram method

Gaussian Matérn × 3 2 values true Matérn REML, OLS PSBa1

Gaussian Matérn × 3 2 values Exponential REML, OLS PSB2

Gaussian Matérn × 3 2 values Nonparametric Shapiro-Botha PSB, SBb3

t10-marginals Matérn × 3 2 values true Matérn REML, OLS PSB,SB
t10-marginals Matérn × 3 2 values Exponential REML, OLS PSB,SB
t10-marginals Matérn × 3 2 values Nonparametric Shapiro-Botha PSB, SB
1Corresponding to simulation results in Figures 1 and 3
2Corresponding to simulation results in Figures 2 and 4
3Corresponding to simulation results in Figures 5 and 6

a PSB:Parametric spatial bootstrap
b SB:Nonparametric spatial bootstrap

3.2. Simulation results

In this section we present the results of the simulations, according to the plan of Table 1, in
graphical form. Both a parametric and nonparametric bootstrap are considered as described
in section 2.5.
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REML Bootstrap

Figure 1: Results of 500 simulations of samples of size N=100 from a Gaussian process with a
specified Matérn variogram and associated parameters - nugget τ2, partial sill σ2 and practical
range. Likelihood fit with REML where variogram with true κ of the Matérn fitted. Boxplots
are based on the median, quartiles, 10th and 90th percentiles of the marginal distribution of a
parameter estimator (REML) over the 500 simulations and they represent the ’true’ parameter
distribution. The associated bootstrap boxplots are based on corresponding estimates (each
estimate based on 500 bootstrap replications). Bootstrap values are medians of the bootstrap
estimates over 500 simulations. Parametric (Gaussian) bootstrap. The dashed line denotes
the true parameter value.

� Figure 1 shows the REML estimator performed better for higher values of the shape
parameter κ than lower and for nugget τ2 = 0 rather than 1/3. The median values
of the REML estimators were close to theoretical values. The bootstrap boxplots of
estimates were very similar to the ’true’ REML boxplots (’true’ in the sense of based
on 500 simulations).
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Figure 2: Same as Figure 1, except exponential variogram fitted.

� Figure 2 shows results where the fitted variogram κ is not the same as the theoretical
one used to generate the data. Our goal here is to to analyze the mis-specification of the
variogram model, as this is commonly an unknown function in real data applications and
can be difficult to estimate (Diggle and Ribeiro 2007, chap. 5). A parametric bootstrap
with κ = 0.5 was then calculated also. Both REML and bootstrap underestimated the
nugget, while estimates of partial sill and range were too large and far from theoretical
values. Results for κ = 1.0 were now better than for κ = 3.0 as it was closer to the true
κ of 0.5.

In Figures 1- 2 a parametric bootstrap was carried out. One could only expect the nonpara-
metric spatial bootstrap SB to do worse so results are not shown for SB.
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OLS Bootstrap

Figure 3: Same as Figure 1, except the estimator is OLS fit to the variogram cloud.

� Figure 3 is the same as Figure 1 but where fitting is to the variogram cloud by ordi-
nary least squares (OLS). The median values of the OLS estimators were smaller than
theoretical values for τ2 = 1/3 and practical range. Results were better for larger val-
ues of κ. Results were worse than in Figure 1, the REML fit, as to be expected with
inter-quartile ranges (IQR’s) larger than REML. The bootstrap boxplots were close to
the ’true’.



Journal of Environmental Statistics 11

0.
00

0.
10

0.
20

τ2=0,σ2=1,p.range=0.5753

τ2  e
st

im
at

es

κ=1 κ=3

0.
0

0.
2

0.
4

0.
6

τ2=1/3,σ2=1,p.range=0.5753

τ2  e
st

im
at

es

κ=1 κ=3

0
2

4
6

8

σ2  e
st

im
at

es

κ=1 κ=3

0
2

4
6

8

σ2  e
st

im
at

es
κ=1 κ=3

0
2

4
6

8
12

p.
ra

ng
e 

es
tim

at
es

κ=1 κ=3

0
2

4
6

8
12

p.
ra

ng
e 

es
tim

at
es

κ=1 κ=3

OLS Bootstrap

Figure 4: Same as Figure 1, except the estimator is OLS fit to the variogram cloud and
exponential variogram fitted.

� Figure 4 is the same as Figure 2 but where fitting is done by OLS. As in Figure 2
results were better for κ = 1.0 than κ = 3.0. Estimates were particularly variable for
κ = 3.0. The marginal medians of τ2 = 1/3 were smaller and those of the partial sill
and practical range larger than theoretical values. The bootstrap medians were close
to the ’true’ but biased downward and the IQR’s were larger. Results were generally
worse than REML fitting.



12 Simulation Spatial Bootstrap

0.
00

0.
04

0.
08

σ2=1,τ2=0,p.range=0.5753

τ2  e
st

im
at

es

κ=0.5 κ=1 κ=3

0.
0

0.
2

0.
4

0.
6

σ2=1,τ2=1/3,p.range=0.5753

τ2  e
st

im
at

es

κ=0.5 κ=1 κ=3

0.
5

1.
5

σ2  e
st

im
at

es

κ=0.5 κ=1 κ=3

0.
5

1.
5

σ2  e
st

im
at

es
κ=0.5 κ=1 κ=3

0.
2

0.
6

1.
0

p.
ra

ng
e 

es
tim

at
es

κ=0.5 κ=1 κ=3

0.
2

0.
6

1.
0

p.
ra

ng
e 

es
tim

at
es

κ=0.5 κ=1 κ=3

S−B Bootstrap

Figure 5: Same as Figure 1, except the estimator is Shapiro-Botha (S-B) fit to the variogram.



Journal of Environmental Statistics 13

0.
00

0.
04

0.
08

σ2=1,τ2=0,p.range=0.5753

τ2  e
st

im
at

es

κ=0.5 κ=1 κ=3

0.
0

0.
2

0.
4

0.
6

σ2=1,τ2=1/3,p.range=0.5753

τ2  e
st

im
at

es

κ=0.5 κ=1 κ=3

0.
5

1.
5

σ2  e
st

im
at

es

κ=0.5 κ=1 κ=3

0.
5

1.
5

σ2  e
st

im
at

es
κ=0.5 κ=1 κ=3

0.
2

0.
6

1.
0

p.
ra

ng
e 

es
tim

at
es

κ=0.5 κ=1 κ=3

0.
2

0.
6

1.
0

p.
ra

ng
e 

es
tim

at
es

κ=0.5 κ=1 κ=3

S−B Bootstrap

Figure 6: Same as Figure 1, except the estimator is Shapiro-Botha (S-B) fit to the variogram
and nonparametric bootstrap.

� Figures 5-6 concern the Shapiro-Botha fit to Gaussian data. The results are very good
in that the median values of estimates are close to the theoretical values although
estimates of τ2 = 1/3 were a bit too small and estimates of practical range also too
small for κ = 0.5. The lower quartiles of the marginal distributions were lower and the
upper quartiles higher than the corresponding ones in Figure 1 and Figure 3 although
results were close generally to those in Figure 3. The bootstrap boxplots were shifted
downward from the true for all parameters. Results did not improve as κ increased.
Note that Figures 5 and 6 have similar marginal distributions. This is as it should be as
the data were generated with the same seed, but the Figures were not amalgamated as
the PSB and SB did not always converge for the same re-samples or same simulations
and the latter were omitted until 500 simulations each with 500 bootstraps was achieved.
This was necessary to make automation possible.



14 Simulation Spatial Bootstrap

0
.0

0
0

.0
6

0
.1

2

σ2=1,τ2=0, p.range=0.5753

τ
2
 e

s
ti
m

a
te

s

κ=0.5 κ=1 κ=3

0
.6

1
.0

1
.4

σ
2
 e

s
ti
m

a
te

s

κ=0.5 κ=1 κ=3

0
.2

0
.4

0
.6

p
.r

a
n

g
e

 e
s
ti
m

a
te

s

κ=0.5 κ=1 κ=3

REML Bootstrap

Figure 7: Same as Figure 1, except the estimator is likelihood fit REML with κ estimated.

� REML estimation was repeated for Gaussian data with Matérn variograms where now
the parameter κ is estimated. The results are shown in Figure 7. The results for κ = 0.5
and κ = 1.0 underestimated the practical range while those for κ = 3.0 were as good
as where κ was assumed known. The parametric bootstrap boxplots were close to the
marginal boxplots but slightly below in the case of the partial sill and practical range.
OLS estimation where κ is estimated could not be automated. For some bootstrap
iterations κ became extremely large and the simulation was aborted.

The foregoing simulations studies done for Gaussian data, and represented in Figures 1-7,
were all repeated for t-distribution marginals data with both bootstrap methods SB and PSB
being carried out. The results are not included in this manuscript but are available on re-
quest. Fitting by REML with Gaussian likelihood the results were not as good as for Gaussian
data. IQR were larger for both REML and bootstrap than in Gaussian case. The medians
of the marginal distributions of the nuggets, partial sills and practical ranges for τ2 = 1/3
were too large. The bootstrap estimates were also too large and shifted slightly below REML
values, with bootstrap IQR smaller than true REML. Estimates were worse for τ2 = 1/3 than
τ2 = 0.0. The best results were for κ = 3.0. Results for SB were as good as for PSB.
The wrong Matérn variogram (i.e. κ = 0.5) was also fitted to t-distribution data. For REML
fit and the parametric bootstrap estimates of nugget are good with the bootstrap percentiles
slightly below true REML. Results for REML for κ = 3.0 in particular are very poor for
partial sill and range with the bootstrap estimates reflecting this. Results were quite similar
to the corresponding fit to Gaussian data.
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For the OLS fit to t-distributed data, median estimates of nugget both OLS and bootstrap
are too large with bootstrap quartiles a little below the ’true’. Estimates of partial sill are too
high also for both OLS and bootstrap while median values of the practical range sampling
distribution are very close to theoretical values. The bootstrap accurately reflected variability
of the estimates although the bootstrap quartiles were a little below the ’true’ for all param-
eters. SB results are similar to PSB. When an exponential variogram was fit by OLS results
were very poor for κ = 3.0 as for Gaussian data but the bootstrap quartiles were close to the
’true’. Overall OLS performed worse than REML.

When Shapiro-Botha was fit to t-distributed data, marginal estimates of nugget and par-
tial sill are too large but quite similar to results from OLS. The bootstrap IQR are similar to
the true marginal IQR for all estimates but with all bootstrap quartiles below those of true.
Results did not improve as κ increased. The SB is similar but slightly worse than PSB. The
Shapiro-Botha fit performed worse than REML both for Gaussian data and t-distribution
data but was as almost as good as OLS.
In summary,

1. The distributions of all parameter estimators- REML, OLS and Shapiro-Botha, were
skewed to the right as is typical for covariance parameters.

2. Results for all methods of estimation were worse when a nugget was present i.e. τ2 = 1/3
than τ2 = 0.0.

3. Results were better for larger values of the shape parameter κ for REML and OLS
estimators (except in case where wrong κ was fitted).

4. The bootstrap estimates accurately reflected the estimator being bootstrapped although
tended to be biased downward. The parametric bootstrap is better than the nonpara-
metric bootstrap.

5. In terms of fitting method, REML (with Gaussian likelihood) outperforms OLS and
Shapiro-Botha even for t-distributed data.

6. If the wrong Matérn κ is fitted, REML and OLS perform very poorly while this is not
an issue for the Shapiro-Botha method. Similarly, REML performs poorly for small
values of κ, where κ is estimated, while again this is not an issue for the Shapiro-Botha
method.

All simulations were carried out on a 20 node, 356 core HPC Cluster. The study was limited to
500 simulations and each simulation with 500 bootstrap replications due to the computation
time required. Each set of parameter values in Figure 1 takes approximately 105-125 h while
those in Figures where fitting is done by OLS take 10-40 h. Therefore, they were run in
parallel on a cluster. In contrast, each set of parameter values in Figure 5, for example, took
about 30 min.

4. Example

In this section we derive an application of the bootstrap methodology to a real data set con-
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cerning bio-monitoring of arsenic pollution in the Central Region of Portugal. The measured
variable represents the concentrations in moss samples, in micrograms per gram dry weight.
The typical procedure, alternative to the more expensive solution of determining the amount
of pollutant directly, is to plant the moss and some time later to collect it, which allows the
concentration of arsenic (and other heavy metals) to be measured. Further details can be
found in Martins, Figueira, Sousa, and Sérgio (2012). The data set was collected in 2006
and it can be represented by (si, Z(si)); i = 1, . . . , n; with n = 98 and Z(si) identifying the
log-transformed concentration of arsenic (As) at location si. As in Garćıa-Soidán, Menezes,
and Rubiños (2014), we adopted the log-transformation and afterwards, there were still three
gross outliers, which were replaced by the average of the remaining values from that year’s
survey. This lead to a more symmetric distribution. The data are displayed in Figure 8.
We first estimate a deterministic model for E[Z(s)] = µ(s) with s = (x, y) ε D ⊂ R2 identi-
fying the easting and northing planar co-ordinate pair in the central region of Portugal zone.
We then assume that the random process Z(s) can be modeled as:

Z(s) = µ(s) + S(s) + ε

where S(s) : s ε D is a zero-mean strictly stationary random process, ε is the nugget effect
and µ(s) = β0+β1×y, (y being the northing co-ordinate of the location s) as in Garćıa-Soidán
et al. (2014). The co-ordinates were divided by a 1000. Assuming a Matérn variogram where
the shape parameter κ was unknown, the variogram was estimated by REML, curve-fitting to
the variogram using OLS and by the Shapiro-Botha estimator of the variogram. For OLS and
Shapiro-Botha, µ(s) was first estimated by a regression model and the observations converted
to residuals before calculating the empirical variogram. For REML a Gaussian likelihood was
assumed. The variability of estimates was assessed using the PSB, with µ̂(s) replacing µ̂ in
equation (3) and a new µ̂(s) estimated and residuals obtained at each PSB iteration.
The results of the fit where the 1st and 3rd quartiles of distributions are estimated by the

Table 2: Mosses arsenic data. A Matérn variogram was assumed where the shape parameter
κ was unknown. Three estimators of variogram parameters were computed: REML, curve-
fitting using OLS and Shapiro-Botha as described in section 2. In each case a parametric
bootstrap (PSB) was carried out and 1st and 3rd quartiles of the estimated parameter’s
distributions estimated.

Parameter REML (Q1) Shapiro-Botha (Q) OLS (Q)

β0 -31.52 (-37.52,-24.352) -37.77(-43.52,-31.57) -37.77(-43.49,-31.64)
β1 0.6945 (0.5344,0.8249) 0.8336(0.6942,0.9587) 0.8336(0.6970,0.9588)
nugget τ2 0.5350 (0.5533,0.8331) 0.5607 (0.5123,0.6854) 0.8012 (0.6762,0.8425)
partial sill σ2 0.2945 (0.0,0.2889) 0.1697 (0.0,0.3494) 0.0 (0.0,0.2158)
practical range 0.4622 (0.0001,0.2126) 0.1461(0.0,3.3047) 1.7028 (1.7028,2.1638)
shape κ 4.6968 (4.4411,5.0964) NA ∞ Gaussian
1bootstrap first and third quartiles

PSB are shown in Table 2. κ is also estimated in each PSB iteration. REML and Shapiro-
Botha estimates show reasonably good agreement with the estimates just inside/outside the
corresponding bootstrap quartiles. The OLS results show weaker agreement, with an esti-
mated κ = ∞ and therefore a Gaussian variogram was fitted. The estimated sill was zero
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indicating little spatial structure. Diggle and Ribeiro (2007, chap. 5) note that in their expe-
rience REML is more sensitive than maximum likelihood (ML) to the chosen model for µ(s).
Therefore the data were also fitted by ML. Results were almost identical to the REML fit
apart from the estimated κ was found to be ∞ i.e. a Gaussian variogram was fitted and the
practical range at 0.2193 (0.0,0.1147) was somewhat smaller than for the REML estimate. All
fits indicated that the nugget is at least two times the partial sill and thus the error process
is mostly white noise with spatial structure only up to a short distance. The trend surface
accounts for a substantial proportion of the spatial variation in the data. The simulation
results of Figure 7 indicate that the PSB is reliable here since the estimated κ is > 3. The
nonparametric bootstrap (SB) gave similar results to PSB but with larger IQR’s.
Figure 9 displays the fitted variograms.

Figure 8: Circle plot for arsenic data from Portugal

5. Discussion

In summary, our results show that REML estimation is superior to curve-fitting to the vari-
ogram by OLS for Gaussian random fields underlying a Matérn dependence structure. This
is also true for random fields with t-distributed marginals. Likelihood methods are favoured
by Diggle and Ribeiro (2007, chap.5), as they point out that the variogram is only one of
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Figure 9: Empirical variogram for the arsenic data (circles), with the the REML fitted
variogram (dotted line), the OLS fitted variogram (dashed line) and Shapiro-Botha fitted
variogram (solid line)

a number of possible summaries of data while likelihood methods use an explicit model for
the original data. In addition, Diggle and Ribeiro (2007, chap. 5) recommend the use of
REML estimation over ML estimation, as do Zimmerman and Zimmerman (1991), so ML is
not considered here.
The nonparametric Shapiro-Botha estimator does not perform as well as REML or OLS for
these data. However, when the fitted variogram is not the same as the theoretical one used to
generate the data, then both REML and OLS perform poorly while this does not affect the
Shapiro-Botha estimator as it does not require specification of a variogram form. In this sense
the Shapiro-Botha estimator is robust. Diggle and Ribeiro (2007, chap.5) state the value of κ
in the Matérn correlation function is often poorly identified and recommend choosing κ from
a discrete set. This is not possible in an automated simulation study. Our results show that
if κ is large i.e κ ≥ 3 then it is well estimated by REML but results for REML are quite poor
when estimating smaller values of κ.
We note that the curve-fitting to the variogram method by OLS is computationally less ex-
pensive than REML estimation. Curve-fitting by OLS took approximately one-third of the
time required by REML. Curve fitting by Shapiro-Botha was even faster than that by OLS.
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The PSB performed well in that it approximated the quartiles of the sampling distributions of
covariance parameter estimates closely, although it tended to be biased downward. Olea and
Pardo-Igúzquiza (2011) argue strongly that bootstrap percentile confidence intervals, that do
not require distributional assumptions for construction, provide an achieved coverage similar
to the nominal coverage. The latter cannot be achieved by symmetrical confidence intervals
based on the standard error, regardless if the standard error is estimated from a parametric
equation or from bootstrap. They used the SB method to provide confidence intervals for
the parameters of a Gaussian process with a spherical variogram fitted using weighted least
squares. Just one set of parameter values were examined. Similar to that study, but estimat-
ing different models and parameters, we conclude that distributions for estimated variogram
parameters tend to be positively skewed. Here it is also clear that bootstrap percentiles can
provide confidence intervals for parameters for all three estimators. They become less useful
however, if the distribution of the estimator is extremely skewed as happens when the ’wrong’
variogram is fitted in the case of REML and OLS.
Moreover our results show, unlike Tang et al. (2007), that SB performs almost as well as
PSB. For the OLS it performed even better than PSB for t-distributed data and in the case
of the Shapiro-Botha estimator performs better overall. However, Tang et al. (2007) consider
estimation of the mean only and do not consider covariance parameters. O’Rourke and Kelly
(2016) employ the PSB in a spatio-temporal variogram setting and all bootstrap iterations
converged and gave reasonable values indicating the reliability of the PSB.
The reader should note our results are limited to linear geostatistical models. This is because
it is difficult to simulate spatial binary data with a specified covariance structure - see for
example Lin and Clayton (2005).
Our simulation is limited to one sample size, as we are primarily concerned with small sam-
ple behaviour, and regular grids. Varying grid sizes and densities could be considered while
keeping the practical range constant, to enable effects of denseness of the data and sample
size to be examined. This was beyond the scope of this study. Neither was it practicable
here to consider non-rectangular designs, proved to be more effective designs in Müller and
Zimmerman (1999) in the case of spherical variogram forms. However, the results obtained
in this work could be used to inform and establish a more extensive study.
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