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Abstract

For some regulatory purposes, it is desired to compare average on-site pollution con-
centrations in a narrowly defined geographic area with a large collection of background
measurements. An approach to this problem is to treat this as a statistical prediction
for the mean of a future sample based on a background sample. In this article, assuming
lognormality, a fiducial approach is described for constructing prediction limits for the
mean of a sample when the background sample is uncensored or censored. The fiducial
prediction limits are evaluated with respect to coverage probabilities, and are compared
with those based on another approximate method. Monte Carlo simulation studies for
the uncensored case indicate that the fiducial methods are accurate and practically exact
even for small samples, and they are very satisfactory for the censored case. Algorithms
for computation of confidence limits are provided. The methods are illustrated using two
real data sets.

Keywords: coverage probability, detection limits, fiducial quantity, maximum likelihood esti-
mates, normal-based methods, prediction limits.

1. Introduction

The applicability of a lognormal distribution has been validated for several practical situations
where the data are positive and right-skewed. Lognormal model was used for analyzing data on
workplace exposure to contaminants by Oldham (1953), Esmen and Hammad (1977), Selvin
and Rappaport (1989), and Lyles and Kupper (1996)), and Krishnamoorthy and Mathew
(2003). The lognormal distribution has become a common choice to represent intrinsically
positive and often highly skewed environmental data in statistical analysis; see Georgopoulos
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and Seinfeld (1982), Speer, and Waite (1975), Gilbert (1987) and Bhaumik and Gibbons
(2004). Confidence limits (CLs) based on a sample for the mean of a lognormal distribution
are used in environmental compliance and workplace pollution concerns. In particular, an
upper confidence limit (UCL) for the mean of a lognormal distribution based on a sample
is used to test if the pollution levels at some location are in compliance with regulatory
standards. Land (1971) has proposed an exact method of finding confidence limits (CLs)
for the mean, and others (e.g., Krishnamoorthy and Mathew, 2003 and Zou et al., 2009)
have proposed simple accurate approximate methods. Solutions to other problems such as
prediction limit for a single future observation, tolerance limits and confidence limits for an
exceedance probability can be obtained in a straightforward manner using one-to-one relation
between the lognormal and normal distributions.

Another important problem in environmental statistics, noted by Bhaumik and Gibbons
(2004), is the comparison of the average of a small number of on-site measurements with
a larger collection of background measurements. Bhaumik and Gibbons have described an
example in which a series of on-site soil samples collected in an area of potential environmen-
tal concern are compared with the background concentration distribution, characterized by n
background measurements. Bhaumik and Gibbons (2004) treated this problem as statistical
prediction for the mean of a future sample based on a background sample. Applying the
normal-based method to log-transformed sample, one could easily obtain a prediction limit
for the geometric mean of a future sample from the same lognormal distribution. However,
such normal-based methods can not be applied directly to find a prediction limit for the
arithmetic mean of a future sample from a lognormal distribution.

A hindrance in industrial hygiene and environmental data analysis is dealing with samples
that include some concentration levels below detection limits (DLs), thus resulting in non-
detect values. Samples with multiple DLs arise when the measurements are obtained using
different devices, each with its own limitation of detecting contaminant levels, or samples are
analyzed by different laboratories. Early recommendations were to replace the nondetects
with a fraction of DL, but such substitution methods often lead to inaccurate results; see
the editorial note by Ogden (2010). So the goal of this article is to propose a simple method
to find a prediction limit for a future sample mean, and the method that can be easily ex-
tended to samples with multiple detection limits. Towards this goal, we propose the fiducial
approach (Fisher, 1935) to log-transformed samples. The fiducial approach, in the name of
generalized variable approach (Tsui and Weerahandi, 1989), has been used to find confidence
limits for the mean of a lognormal distribution and to find a confidence interval (CI) for the
difference between or the ratio of means of two lognormal distributions by Krishnamoorthy
and Mathew (2003). The so-called generalized variable approach, introduced by Tsui and
Weerahandi (1989) and Weerahandi (1993), is a special case of the fiducial inference intro-
duced by Fisher (1930, 1935); see Hannig, Iyer and Patterson (2006). For the continuous case,
the fiducial approach has been used successfully to estimate or to test a function of param-
eters where pivotal quantities are available for individual parameters (e.g., lognormal mean,
normal quantiles and quantiles in one-way random model). Wang, Hannig and Iyer (2012)
have proposed a fiducial approach to find prediction intervals (PIs) for the mean of a future
sample in a general setup, and illustrated their approach for finding prediction limits for the
cases of normal, gamma, exponential and Weibull distributions. These authors have noted
that fiducial prediction limits for various random quantities are comparable with those based
on other exact methods (e.g., normal, exponential and Weibull). Recently, Krishnamoorthy



Journal of Environmental Statistics 3

and Wang (2016) have applied the fiducial approach to cube root transformed samples from a
gamma distribution to obtain prediction limits for the mean of a future sample. Their results
can be used in a straightforward manner to obtain prediction limits when the samples include
detection limits.

It should be noted that a PI for a single future observation from a lognormal distribution
can be obtained in a straightforward manner (see Section 2.3), but finding PI for the mean
of a future sample is not a trivial task. The paper by Bhaumik and Gibbons (2004) appears
to be the first one addressing this problem. As will be seen in the sequel of this paper, this
approach is quite complex, not satisfactory in terms of coverage probability, and is not easy
to extend to the case of multiple detection limits. Recently, Martin and Lingham (2016)
have provided a general approach referred to as “prior-free probabilistic prediction” based on
inferential modelling (IM) and illustrated the approach for finding a prediction interval in our
present problem. It is well-known that a fiducial distribution for a parameter is a prior-free
posterior distribution (Efron, 1998), and so it is natural to expect that the fiducial PI should
be similar to the one in Martin and Lingham (2016). Indeed, the method that we shall employ
is based on the fiducial approach by Wang et al. (2012), and the resulting PI is identical to
the one given in Martin and Lingam (2016). Furthermore, fiducial approach can be readily
extended to the censored case.

The rest of the article is organized as follows. In the following section, we outline the method
by Bhaumik and Gibbons (2004) for finding an upper prediction limit for the mean of a future
sample. We also describe fiducial quantities (FQs) for µ and σ2, which are functions of the
mean and variance of log-transformed samples and some random variables whose distributions
do not depend on any unknown parameters. On the basis of the fiducial quantities, and
following the approach by Wang et al. (2012), we outline a simulation-based approach to find
a prediction limit for the mean of a future sample. The fiducial inference, in general, is not
exact. For the case of predicting a single future observation, we show that the fiducial PI is
exact in the frequentist sense, and for the case of predicting the mean of future sample, our
simulation studies indicate the fiducial PIs are very accurate. The results are extended to
samples with multiple detection limits in Section 3. The coverage probabilities of the proposed
prediction limits were evaluated using Monte Carlo simulation, and they were compared with
those of the prediction limits by Bhaumik and Gibbons (2004). In Section 4, the fiducial
methods are illustrated using two environmental data sets, one is uncensored and another
includes two detection limits. Some concluding remarks are given in Section 5.

2. Uncensored Case

2.1. Bhaumik-Gibbons’ Approach

To outline the approach by Bhaumik and Gibbons (2004), let Y1, ..., Yn be a background
sample and Y ∗

1 , ..., Y
∗
n∗

be a future sample from a lognormal distribution with parameters
E(ln Yi) = µ and var(lnYi) = σ2. Let T ∗ denote the total of the future sample. Bhaumik and
Gibbons have used an approximate probability density function (pdf) of a studentized version
Z∗ of T ∗ to find an upper prediction limit (UPL) for a future sample mean. If f(z∗|µ, σ) denote
the approximate pdf of Z∗, then a 100(1 − α)% UPL for the mean of the future sample can
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be obtained from TU , where TU is determined by the equation

∫ TU

0

f(z∗|µ̂, σ̂)dz∗ = 1− α.

Bhaumik and Gibbons have provided an explicit expression for f(z∗|µ̂, σ̂), which does not even
satisfy some basic requirements of a pdf; it could be negative with multiple modes over a range
of Z∗ and the integral over the support of Z∗ could be different from unity. Furthermore, the
pdf used in the above equation is estimated by replacing the unknown parameters with the
estimates µ̂ and σ̂, and so the predicting method does not account for the variability of the
background samples. For these reasons, any method on the basis of an approximate pdf of
Z∗ could lead to inaccurate results. In fact, to find a prediction limit for Ȳ ∗, one needs the
pdf of a studentized quantity (Ȳ − Ȳ ∗)/(v̂ar(Ȳ − Ȳ ∗)), and finding such pdf is not an easy
task.

2.2. Fiducial Quantities

In order to apply the fiducial approach by Wang et al. (2012) to find a UPL for a future
sample mean, we first need to describe the fiducial quantities for the lognormal parameters.
Consider a sample Y1, ..., Yn from a lognormal distribution with parameters µ and σ2. Let
Xi = ln(Yi), i = 1, ..., n, so that Xi’s are independent N(µ, σ2) random variables. Define

X̄ =
1

n

n∑

i=1

Xi and S2 =
1

n− 1

n∑

i=1

(Xi − X̄)2. (1)

To describe the fiducial quantities for µ and σ2 on the basis of Dawid and Stone (1982)
approach, we first note that

X̄
d
= µ+ Z

σ√
n

and S2 d
= σ2 χ

2
n−1

n− 1
,

where Z is the standard normal random variable, χ2
m denotes the chi-square random variable

with degrees of freedom (df) m and the notation “
d
=” means “distributed as.” Furthermore,

Z and χ2
n−1 are independent random variables. Let (x̄, s) be an observed value of (X̄, S).

Solving the above equations for µ and σ2, and replacing (X̄, S) with (x̄, s), we obtain the
fiducial quantities for the parameters as

Gµ = x̄+
Z
√
n− 1√
χ2
n−1

s√
n

and Gσ2 =
(n− 1)s2

χ2
n−1

. (2)

Notice that the fiducial distributions (conditional distributions of Gµ and Gσ2 given (x̄, s))
for the parameters do not depend on any unknown parameters. A fiducial quantity for a
real-valued function, say, h(µ, σ2) can be obtained by simple substitution as h (Gµ, Gσ2) .
For example, a fiducial quantity for the mean of a lognormal distribution is given by GM =
exp (Gµ +Gσ2/2). For a given x̄ and s2, the distribution of GM does not depend on any
unknown parameters, so its percentiles may be estimated by Monte Carlo simulation. More
details, on finding the fiducial CIs for the mean and difference between two means, see Kr-
ishnamoorthy and Mathew (2003).
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2.3. Fiducial Prediction Limits

Let Y1, ..., Yn∗
be a future sample from the lognormal distribution from which the background

sample was obtained. Then

(Y1, ..., Yn∗
)

d
=
(
eµ+Z∗

1
σ, ..., eµ+Z∗

n∗
σ
)
, (3)

where Z∗
i ’s are independent standard normal random variables. Let (x̄, s2) be the observed

value of (mean, var) based on a log-transformed background sample of size n. Replacing µ
and σ in (3) with the fiducial quantities Gµ and Gσ in (2), we obtain fiducial variables for a
future sample as

(
GY1

, ..., GYn∗

)
=
(
eGµ+Z∗

1
Gσ , ..., eGµ+Z∗

n∗
Gσ

)
. (4)

The above fiducial variables are a function of the standard normal random variables and the
fiducial variables Gµ and Gσ , whose distributions do not depend on any parameters. So, for a
given (x̄, s), the joint distribution can be estimated by Monte Carlo simulation. In particular,
for a given (x̄, s), the percentiles of

GY =
1

n∗

n∗∑

j=1

GYj
(5)

can be estimated by Monte Carlo simulation. The 100(1− α) percentile of GY is the fiducial
UPL for the mean of a future sample; for more details, see Algorithm 1. We observe from
(4) that the sampling distribution of GY is determined by the future sample size n∗ and the
background sample via the fiducial quantities Gµ and Gσ .

To shed some light on the fiducial prediction limit, let us consider the case of n∗ = 1. That
is, prediction limit for a single future observation Y from a lognormal distribution based on a
background sample of size n. The UPL for Y , on the basis of normal-based prediction limit
of lnY , is given by

exp

(
x̄+ tn−1;1−αs

√
1 +

1

n

)
, (6)

where tf ;q denotes the 100q percentile of the t distribution with df = f . To simplify the
fiducial UPL based on (4) for the case of n∗ = 1, let Z1 and Z2 be independent standard
normal random variables. Using the expressions for Gµ and Gσ in (2), we see that

GY
d
= exp (Gµ + Z2Gσ)

= exp

(
x̄+ s

√
n− 1

Z1/
√
n+ Z2√
χ2
n−1

)

d
= exp

(
x̄+ tn−1s

√
1 +

1

n

)
.

To arrive at the third step, we used the facts that Z1/
√
n + Z2 is distributed as

√
1 + 1/n

times a standard normal random variable, and
√
mZ/

√
χ2
m ∼ tm. Thus, on the basis of the

above stochastic representation, we see that the fiducial UPL for Y coincides with the exact
one in (6).
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To develop an algorithm for computing the prediction limit for the case of n∗ ≥ 2, we first
note that GYj

in (4) has the stochastic representation that

ln(GYj
)

d
= Gµ + ZjGσ

= x̄+ s
√
n− 1

Z/
√
n+ Zj√
χ2
n−1

, j = 1, ..., n∗.

Thus,

GY = exp(x̄)


 1

n∗

n∗∑

j=1

exp(Wj)


 , (7)

where Wj = s
√
n− 1

Z/
√
n+Zj√
χ2

n−1

, j = 1, ..., n∗. The conditional distribution of GY given (x̄, s)

is referred to as the fiducial predicting distribution. As noted in the introduction Martin and
Lingham (2016) have obtained the same expression for GY using inferential modeling, and
they refer to the conditional distribution of GY as the “plausible predicting distribution.”

Using the expression (7) for GY , calculation of the UPL can be carried out as shown in the
following algorithm.

Algorithm 1

1. For a given sample from a lognormal distribution, compute the mean x̄ and variance s2

of the log-transformed sample.

2. Generate U from χ2
n−1 distribution and a normal variate Z from N(0, 1) distribution.

3. Generate a set of random numbers Z1, ..., Zn∗
from N(0, 1), and set

Wj = s
√
n− 1(Z/

√
n+ Zj)/

√
U, j = 1, ..., n∗.

4. Compute GY = exp(x̄)
(

1
n∗

∑n∗

j=1 exp(Wj)
)
.

5. Repeat steps 2 – 4 for a large number of times, say, 100,000

6. The 100(1− α) percentile of these 100,000 GY ’s is a 100(1− α)% UPL for the mean of
a future sample of size n∗.

The above algorithm can be easily coded in any programming language. R codes of the algo-
rithm is posted at www.ucs.louisiana.edu/∼kxk4695/ and is also available as a supplementary
file at the journal’s website.

2.4. Coverage Studies

We have shown in Section 2.3 that the fiducial UPL is exact for predicting a single future
observation. However, the accuracy of the fiducial method should be judged by Monte Carlo
simulation studies when the size of a future sample is two or more. Accordingly, we evaluate
the coverage probabilities of the fiducial prediction limits for the sample size and parameter
configurations considered in Bhaumik and Gibbons (2004) so that the fiducial method can be
compared with the approximate method by these authors. The coverage probabilities of the
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fiducial method for the uncensored case are estimated as follows. We first generated 10,000
pairs of background and future samples of sizes n and n∗, respectively, from an assumed
lognormal distribution. For each generated background sample, we estimated the 95% UPL
for the mean of a future sample using Algorithm 1 with 10,000 runs. The proportion of
the UPLs that include the means of the corresponding future samples is an estimate of the
coverage probability.

The estimated coverage probabilities of 95% fiducial UPLs along with those of Bhaumik and
Gibbons’ (B-G) approach are reported in Table 1 for the uncensored case. The coverage
probabilities of B-G UPLs are close to the nominal level when σ2 is .0625 or .2. Even for
such small values of σ2, the B-G UPLs could be conservative for moderate to large samples.
For σ2 = 2 or 3, the B-G UPLs are anti-conservative for small n and conservative for large n.
For example, when (n, n∗, σ

2) = (5, 10, 3), the coverage probability of the B-G UPL is .859,
and when (n, n∗, σ

2) = (100, 10, 3), it is .977. On the other hand, the coverage probabilities
of the fiducial UPLs were close to the nominal level for all the combinations of sample sizes
and parameter values that we considered.

To judge the accuracy of the fiducial UPLs for very small sample sizes, we estimated the
coverage probabilities for different confidence levels. The estimated coverage probabilities
reported in Table 2 are practically coincide with the nominal confidence levels in all cases.
This suggests that fiducial prediction intervals are satisfactory regardless of sample sizes.

Table 1: Coverage probabilities of 95% UPLs for the mean of a future sample of size n∗ based
on a background sample of size n

µ = 2, σ2 = .0625 µ = 3, σ2 = .2
n∗ = 5 n∗ = 10 n∗ = 5 n∗ = 10

n B-G Fiducial B-G Fiducial B-G Fiducial B-G Fiducial
5 .949 .953 .949 .951 .935 .953 .949 .951
10 .976 .948 .972 .953 .966 .954 .972 .953
20 .981 .946 .981 .952 .974 .948 .981 .952
30 .984 .947 .984 .953 .978 .951 .984 .953
100 .987 .953 .989 .946 .982 .953 .989 .946

µ = 3, σ2 = .5 µ = 3, σ2 = 1
n n∗ = 5 n∗ = 10 n∗ = 5 n∗ = 10
n B-G Fiducial B-G Fiducial B-G Fiducial B-G Fiducial
5 .917 .951 .910 .952 .935 .953 .887 .953
10 .955 .945 .943 .948 .966 .954 .931 .949
20 .965 .954 .959 .952 .974 .948 .950 .951
30 .971 .952 .966 .944 .978 .951 .958 .951
100 .977 .952 .975 .948 .982 .953 .972 .947

µ = 3, σ2 = 2 µ = 3, σ2 = 3
n n∗ = 5 n∗ = 10 n∗ = 5 n∗ = 10
n B-G Fiducial B-G Fiducial B-G Fiducial B-G Fiducial
5 .890 .948 .867 .954 .887 .949 .859 .952
10 .942 .949 .920 .949 .943 .957 .916 .955
20 .959 .950 .950 .947 .963 .948 .953 .948
30 .968 .950 .960 .952 .973 .950 .963 .950
100 .977 .948 .976 .946 .978 .956 .977 .951

NOTE: B-G: Bhaumik and Gibbons’ (2004) method; numbers in parentheses are expected values of UPLs.
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Table 2: Coverage probabilities of 95% fiducial UPLs for small sample sizes
µ = 1

σ (n, n∗) = (3, 2) (n, n∗) = (4, 3) (n, n∗) = (5, 3) (n, n∗) = (6, 4)
90% 95% 99% 90% 95% 99% 90% 95% 99% 90% 95% 99%

.2 .900 .950 .991 .904 .951 .991 .904 .951 .989 .907 .956 .993

.5 .909 .955 .992 .902 .952 .991 .907 .954 .990 .906 .952 .989
1 .907 .953 .991 .900 .952 .991 .906 .953 .990 .909 .954 .990
2 .900 .948 .988 .907 .953 .992 .901 .952 .991 .898 .947 .989
3 .903 .953 .990 .900 .948 .990 .903 .951 .990 .899 .950 .989

3. Prediction Limits: Censored Case

For the uncensored case, the fiducial quantities are a function of the mean and standard
deviation based on log-transformed samples. We shall develop similar fiducial quantities as
a function of the maximum likelihood estimates (MLEs) based on log-transformed censored
background sample and other random quantities whose distributions do not depend on any
unknown parameters. Such fiducial quantities are already obtained in Krishnamoorthy and
Xu (2011), and later used in Krishnamoorthy, Mathew and Xu (2014) and Krishnamoorthy
and Wang (2016) to obtain approximate solutions to some other problems involving normal
and gamma distributions. For the sake of completeness and ease of reference, we shall describe
the approach below.

3.1. Maximum Likelihood Estimates and Fiducial Quantities

Consider a simple random sample of n observations subject to k detection limits, say,
DL1,...,DLk, from a normal distribution with mean µ and variance σ2. Let us assume without
loss of generality that DL1 < DL2 < ... < DLk, and all the measurements are expressed in
the same measurement unit. Let mi denotes the number of nondetects that are below DLi,
and let m =

∑k
i=1mi, so that the number of detected observations is n −m. Let us denote

the detected observations by x1, ..., xn−m. Define

x̄d =
1

n−m

n−m∑

i=1

xi and s2d =
1

n−m

n−m∑

i=1

(xi − x̄d)
2. (8)

Notice that (x̄d, s
2
d) is the (mean, variance) based on the detected observations. The log-

likelihood function for the censored case, after omitting a constant term, can be written as

l(µ, σ) =
k∑

i=1

mi lnΦ(z
∗
i )− (n−m) lnσ − (n−m)(s2d + (x̄d − µ)2)

2σ2
, (9)

where z∗i = DLi−µ
σ , i = 1, ..., k. The MLE (µ̂, σ̂) of (µ, σ) is obtained by maximizing (9)

(Krishnamoorthy, Mathew and Xu, 2014).

In order to obtain fiducial quantities for µ and σ, we shall use the approximate distributional
results for the MLEs given in Krishnamoorthy and Xu (2011). Let (µ̂, σ̂) denote the MLE of
(µ, σ) based on a log-transformed sample. Let µ̂∗ and σ̂∗ denote the MLEs based on a sample
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of size n from a N(0, 1) distribution with DLs DL∗
i = (lnDLi − µ̂)/σ̂, i = 1, ..., k. Then

µ̂− µ

σ
∼ µ̂∗ and

σ̂

σ
∼ σ̂∗, approximately. (10)

The above distributional results are exact if Pi = Φ((DLi − µ)/σ), i = 1, ..., k are known
(Krishnamoorthy and Zou, 2011). On the basis of the above results, we have the following
approximate stochastic representations:

µ̂
d
= µ+ µ̂∗σ and σ̂

d
= σσ̂∗, approximately.

Let (µ̂0, σ̂0) be an observed value of (µ̂, σ̂). Solving the above equations for µ and σ, and then
replacing (µ̂, σ̂) with (µ̂0, σ̂0), we obtain the FQs for µ and σ as

Qµ = µ̂0 −
µ̂∗

σ̂∗
σ̂0 and Qσ =

σ̂0
σ̂∗

. (11)

For a given (µ̂0, σ̂0), the percentiles of Qµ and Qσ can be estimated by Monte Carlo simulation.

Following the lines of the uncensored case in Section 2, we can obtain joint fiducial distribution
empirically by generating samples from a N(0, 1) distribution with detection limits DL∗

i =
(lnDLi − µ̂0)/σ̂0, i = 1, ..., k. Calculation details for computing a UPL for the mean of a
future sample is given in the following algorithm.

Algorithm 2

1. For a given sample with detection limits DL1, ...,DLk from a lognormal distribution,
compute the MLEs µ̂0 and σ̂0 based on the log-transformed sample and log-transformed
DLs.

2. Generate a sample of size n with detection limits DL∗
i = (lnDLi−µ̂0)/σ̂0 from a N(0, 1)

distribution

3. Compute the MLEs µ̂∗ and σ̂∗ based on the sample generated in the preceding step.

4. Calculate Qµ = µ̂0 − µ̂∗

σ̂∗
σ̂0 and Qσ = σ̂0/σ̂

∗.

5. Generate a sample Y ∗
1 , ..., Y

∗
n∗

f rom a normal distribution with mean Qµ and standard
deviation Qσ, and compute Ȳ ∗

e = 1
n∗

∑n∗

i=1 exp(Y
∗
i ).

6. Repeat steps 2 – 5 for a large number of times, say, 10,000

7. The 100(1− α) percentile of these 10,000 Ȳ ∗
e ’s is a 100(1−α)% UPL for the mean of a

future sample of size n∗.

The above algorithm is coded in R and posted at www.ucs.louisiana.edu/∼kxk4695/. For
a given sample with multiple detection limits, the posted R function computes the upper
prediction limit for the mean of a future sample.

3.2. Coverage Studies

The coverage probabilities of 95% UPLs were estimated for the censored case along the lines
for the uncensored case in Section 2.4. We carried out simulation studies for the samples
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that include a single detection limit or two detection limits. For the case of single detection
limit, the coverage probabilities are reported in Table 3 for (n, n∗) = (10, 5) and proportion
of nondetects in the population is .7 or less. The coverage probabilities for the case of two
detection limits are given in the same table when (n, n∗) = (12, 4).

The estimated coverage probabilities, being very close to the nominal level .95, indicate that
the fiducial UPLs are very satisfactory when the proportion of nondetects is .60 or less. For
(n, n∗) = (10, 5), the coverage probabilities are slightly less than the nominal level .95 when
the proportion of nondetects P1 = .7; however, for the same proportion of nondetects, these
coverage probabilities are close to the nominal level when (n, n∗) = (15, 5). For the case of two
detection limits, the fiducial prediction limits are satisfactory when the overall proportion of
nondetects is no more than .6. These simulation results indicate that the fiducial prediction
limits could be liberal for small n and large proportion of nondetects. For a moderate sample
size, say, 15 or more, the fiducial UPLs should work satisfactorily as long as the proportion
of nondetects is no more than .70.

4. Examples

Example 1. To illustrate the application of the lognormal prediction limit for a future mean
value, we shall use the example where the toxin of concern is lead (Bhaumik and Gibbons,
2004). An objective of this example is to determine whether a closed plating facility is safe
for future industrial use. In the past, a portion of the facility might have been used as a
waste disposal area. To determine the lead-impacted soil, n∗ = 5 soil borings were installed.
To check whether the on-site mean lead concentration at this area of the facility exceeds
background, n = 15 off-site soil samples were collected in areas that were uninfluenced by the
activities at the facility. The data are reported in Table 5 of Bhaumik and Gibbons (2004),
and are reproduced here in Table 4. Bhaumik and Gibbons have also verified that the data
satisfy lognormality assumption.

The mean and variance of the log-transformed background data are x̄ = 2.1815 and s2 =
2.3463. Using their approach, Bhaumik and Gibbons (2004) have estimated the 95% upper
prediction limit as 152.3 mg/kg. The 95% fiducial UPL using Algorithm 1 with 1,000,000 runs
is obtained as 137.5 mg/kg. Martin and Lingham (2016) have obtained the UPL as 136.16
mg/kg on the basis of GY in (7). The little difference between their UPL and our UPL could
be due to simulation error.

As the arithmetic mean of the on-site data 83.6 is less than the UPL, we conclude that the on-
site concentrations do not significantly exceed those of the off-site. Finally, we note that the
UPL based on the Bhaumik and Gibbons’ approach is considerably greater than the fiducial
UPL, and this comparison is consistent with our simulation studies in Section 3.2 where we
observed that Bhaumik and Gibbons’ approach could be conservative for some sample size
and parameter configurations.

Example 2. To find fiducial prediction limits for samples with multiple DLs, we consider the
atrazine concentrations data from a series of Nebraska wells reported in Table 9.7 of Helsel
(2005, p. 159). The original data were altered by adding a second detection limit at .05 (see
Helsel, 2005, p. 229), and they are reproduced here in Table 5. The probability plot in Figure
5.5 of Helsel (2005) indicates that lognormality assumption is tenable.

For this data set, n = 24, DL1 = .01, DL2 = .05, the number of nondetects below DL1
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Table 3: Coverage probabilities of 95% UPL for the mean of a future sample of size n∗ based
on a background sample of size n

single detection limit
n = 10, n∗ = 5

(µ, σ) (µ, σ)
P1 (1, .1) (1, .5) (1, 1) (1, 2) (2, .1) (2, .5) (2, 1) (2, 2)
0.1 .948 .950 .956 .948 .950 .951 .950 .950
0.2 .950 .951 .951 .944 .951 .951 .948 .951
0.3 .950 .950 .947 .957 .950 .955 .945 .955
0.5 .940 .946 .944 .947 .945 .945 .951 .945
0.6 .939 .938 .941 .938 .933 .938 .940 .937
0.7 .925 .928 .926 .932 .927 .929 .933 .927

n = 15, n∗ = 5
0.1 .944 .945 .949 .947 .951 .948 .949 .953
0.2 .948 .949 .953 .955 .948 .946 .950 .951
0.3 .952 .953 .950 .951 .942 .951 .944 .947
0.5 .945 .954 .954 .941 .952 .945 .940 .948
0.6 .934 .952 .942 .946 .949 .949 .951 .944
0.7 .944 .945 .946 .945 .944 .944 .951 .947
two detection limits

n = 12, n∗ = 4
(µ, σ) (µ, σ)

(P1, P2) (1, .1) (1, .5) (1, 1) (1, 2) (2, .1) (2, .5) (2, 1) (2, 2)
(.1, .2) .954 .951 .956 .948 .947 .953 .949 .950
(.1, .3) .952 .951 .951 .944 .955 .951 .951 .951
(.2, .2) .945 .947 .947 .957 .954 .950 .954 .955
(.2, .3) .951 .952 .944 .947 .945 .948 .949 .945
(.1, .5) .947 .950 .951 .948 .947 .947 .955 .947

n = 16, n∗ = 7
(.1, .2) .950 .947 .953 .954 .947 .953 .949 .951
(.1, .3) .951 .946 .950 .949 .955 .951 .947 .951
(.2, .2) .947 .954 .954 .950 .954 .950 .954 .953
(.2, .3) .948 .951 .947 .956 .945 .948 .951 .947
(.1, .5) .951 .953 .946 .949 .947 .947 .950 .948

NOTE: Pi denotes the proportion of data below the detection limit DLi

Table 4: Lead level (mg/kg) in soil boring samples in off-site and on-site locations
Off-site 26 63 3 70 16 5 1 57 5 3 24 2 1 48 3

On-site 50 82 95 103 88

is m1 = 9 and the number of nondetects below DL2 is m2 = 2. The MLEs based on the
log-transformed data are µ̂ = −4.206 and σ̂ = 1.462. Suppose it is desired to find a 95% UPL
for the mean of a future sample of size 5. Using Algorithm 2 with 100,000 runs, we estimated
the 95% UPL for a future sample of size 5 as 0.20. That is, the mean atrazine concentration
of a future sample of size 5 is no more than .20 with confidence 95%.
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Table 5: Atrazine concentrations (µg/L) in a series of Nebraska wells before June
.38 < .05 < .01 .03 .03 .05 .02 < .01 < .01 < .01 .11 .09

< .01 < .01 < .01 < .01 .02 < .05 .02 .02 .05 .03 .05 < .01

5. Concluding Remarks

We have used the fiducial approach to solve yet another important problem of predicting
the mean of a future sample from a lognormal distribution. The fiducial method is not only
simple, but also provides very accurate prediction limits. We also noted that the fiducial
prediction limit is exact for predicting a single future observation. Our extensive simulation
studies for very small sample sizes indicate that the fiducial UPLs are practically exact. How-
ever, proving the exactness of the approach theoretically seems to be difficult. An appealing
feature of the fiducial approach is that it can be easily applied to find prediction limits for
the mean of a future sample based on a sample with multiple detection limits. However,
it should be noted that the fiducial approach to the censored case involves repeated calcu-
lation of the MLEs based on censored samples, which requires an efficient computational
algorithm. In order to help statistical practitioners and other users, we have posted R codes
at www.ucs.louisiana.edu/∼kxk4695 to find UPLs based on a censored or uncensored samples.
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