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Abstract

We explore the use of Poisson-hidden Markov model to describe an overdispersed data
on monthly death counts due to Dengue fever. Independent Poisson mixture models of
various components and stationary Poisson hidden Markov models of different states are
fitted and the performance of each model is judged using model selection criteria. The
sequence of hidden states are estimated based on the best fitted model. The method can
be applied in identifying environmental factors affecting a stochastic process.
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1. Introduction

Dengue fever is one of the widely spreading diseases mostly in tropical and sub-tropical
areas. Global incidence of Dengue is drastically increasing in the recent years. The year
2015 was characterized by large Dengue outbreaks worldwide. It is widespread throughout
the tropics with local variations in risk influenced by environmental factors such as rainfall,
temperature and unplanned rapid urbanization. India turned out to be a country with the
world’s highest Dengue burden with about 34 per cent of the total Dengue fever cases reported
in the world. The number of deaths occurred due to Dengue fever is highest in Kerala when
compared to other states in India. Studies reveal that this is mainly beacuse of the favourable
environmental conditions in Kerala for the growth of Aedes aegypti mosquitoes which carry
the Dengue virus. We make use of the time series data of monthly deaths occurred due to
Dengue fever in Kerala from January 2006 to December 2015. The data is collected from the
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official website of the Directorate of Health Services, Kerala.

Usually for unbounded counts, Poisson distribution is a natural choice to describe them.
But it is not suitable for situations where the variance is much larger than the mean. The
data considered here is an overdispersed one and hence a simple Poisson distribution is not
a suitable model. A commonly used alternative model is negative binomial distribution.
But the structure of the present data does not allow a negative binomial distribution. For
overdispersed count data set, an independent mixture of Poisson models can be used as it
can accommodate unobserved heterogeneity in the population. But independent mixture
of Poisson models also insufficient as the observations in this study are serially dependent.
Hidden Markov models, that allow the probability distribution of each count to depend on the
hidden state of a Markov chain can accommodate both overdispersion and serial dependence.
In this context we considered Poisson-hidden Markov model to describe the situation more
precisely.

Section 2 contains preliminary concepts and results required for the study. In Section 3,
an independent mixture of Poisson models and different hidden Markov models are fitted to
the Dengue fever death count data and the performance of each model is judged. Finally, a
discussion of the results and inferences are given in Section 4.

2. Preliminaries

2.1. Mixture Model

An independent mixture distribution consists of m component distributions and a mixing
distribution which selects from these components. We consider a sequence of observations, yt,
made at times t = 1, 2,. . ., n, where yt represents the observed number of counts and let Yt

be the corresponding random variable. Let δ1, . . . , δm such that
m∑
i=1

δi = 1 be the respective

assigned probabilities of m component distributions having probability functions p1, . . . , pm.
If Yt is a random variable having the mixture distribution, then it has the following probability
function:

P (Yt = y) =
m∑
i=1

δipi(y). (1)

That is, an observation is generated by one of m distributions where the choice of the dis-
tribution pi is made by a second random mechanism, called the parameter process. Here

δ1, . . . , δm are the mixing parameters such that
m∑
i=1

δi = 1, and pi the probability function of

the component random variable Xi. The kth moment about the origin is the following:

E(Y k
t ) =

m∑
i=1

δiE(Xk
i ), k = 1, 2, . . .

The parameter estimation of a mixture distribution is performed by the method of maximum
likelihood estimation. The likelihood of the sequence of observation y1, . . . , yn for an m
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component mixture model is the following:

L(θ1, . . . ,θm; δ1, . . . , δm|y1, . . . , yn) =
n∏
j=1

m∑
i=1

δipi(yj ,θi) (2)

where θ1, . . . ,θm are the parameter vectors of component distributions. We assume that
each Dengue fever death count is generated by one of m Poisson distributions, with means
λ1, . . . , λm, where the choice of mean λi is selected with probability δi, where i = 1, 2, . . . ,m

and
m∑
i=1

δi = 1. Thus 2m− 1 independent parameters are to be estimated. Here the problem

of unbounded likelihood does not arise as the observations are discrete.

An independent mixture model does not allow for the serial dependence in the observations.
The data considered in this study is a serially dependent one. One easy way of allowing serial
dependence in the observations is to relax the assumption that the parameter process is serially
independent. A most elementary and simple form of dependence is Markov dependence. So we
assume that the parameter process is a Markov chain. The resulting model for the observations
is called a Markov-switching model or Markov-dependent model or Poisson-hidden Markov
model.

2.2. Hidden Markov Model

Hidden Markov models (HMMs) are models in which the distribution that changes through
time according to the states of a hidden Markov chain. The theory of HMMs were introduced
by Baum and Petrie (1966) and Baum et al. (1970). The underlying systems are directly
observable in Markov models. But in real-world applications, the system may be unobservable
but observable through another stochastic process. In HMMs, the state of an underlying
system at any time t is unobservable. The observations are the outputs of another stochastic
process under the influence of a hidden process. Therefore, the system follows a hidden
process having the Markov property. A detailed description of the properties of HMMs can
be found in Rabiner (1989) and Zucchini and MacDonald (2009). More accounts of the history
of HMMs can be found in Cappe et al. (2005) and MacDonald and Zucchini (1997). HMMs
were applied in the analysis of biological sequences and in signal processing applications.
HMMs provide a powerful and flexible mathematical structure to make statistical inferences
on partially observed stochastic processes more accurate. A wide spectrum of applications of
HMMs can be seen from Juang and Rabiner (1991), Durbin et al. (1998) and Guttorp (1995).

Let {Ct : t = 1, 2, ...} represents the unobserved parameter process satisfying Markov property
and {Yt : t = 1, 2, ...} is the state-dependent process such that, when Ct is known, the
distribution of Yt depends only on current state Ct and not on previous states or observations.
If Y(t) and C(t) representing the histories from time 1 to time t, then HMM {Yt : t = 1, 2, ...}
is a particular kind of dependent mixture, in such a way that:

P (Ct | C(t−1)) = P (Ct | Ct−1), t = 2, 3, ...

P (Yt | Y(t−1),C(t)) = P (Yt | Ct), t ∈ N.

In the case of discrete observations, the probability mass function of Yt if the Markov Chain
is in state i at time t is the following:

pi(y) = P (Yt = y | Ct = i).
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Now define ui(t) = P (Ct = i) for t = 1, . . . , n. Then

P (Yt = y) =
m∑
i=1

P (Ct = i)P (Yt|Ct = i)

=
m∑
i=1

ui(t)pi(y)

= (u1(t), . . . , um(t))

 p1(y) 0
. . .

0 pm(y)


 1

...
1


= u(t)P (y)1′.

where P (y) is the diagonal matrix with ith diagonal element pi(y), u(t) = (u1(t), . . . , um(t))
is the initial distribution of the Markov chain. If u(t) is the initial distribution and Γ = (γij)
is the transition probability matrix of the Markov chain, then the distribution at time t + 1
can be given as follows:

u(t+ 1) = u(t)Γ.

Hence

P (Yt = y) = u1Γ
t−1P (y)1′.

Therefore

E(Yt) =
m∑
i=1

E(Yt|Ct = i)P (Ct = i) =
m∑
i=1

ui(t)E(Yt|Ct = i).

If the Markov chain is stationary and has stationary distribution δ, then δΓt−1 = δ for all
t ∈ N and hence

P (Yt = y) = δP (y)1′.

Consider a stationary m-state Poisson-HMM {Yt : t = 1, 2, . . .} with transition probability
matrix Γ and state-dependent means λ = (λ1, . . . , λm). Let δ = (δ1, . . . , δm) be the stationary
distribution of the Markov chain and Λ = diag(λ). Then

E(Yt) = δλ′. (3)

E(Yt
2) =

m∑
i=1

(λ2i + λi)δi = δΛλ′ + δλ′.

Var(Yt) = δΛλ′ + δλ′ − (δλ′)2 ≥ E(Yt). (4)

E(YtYt+k) = δΛΓkλ′; k ∈ N.

ρ(k) = Corr(Yt,Yt+k) =
δΛΓkλ′ − (δλ′)2

δΛλ′ + δλ′ − (δλ′)2
; k ∈ N. (5)

If y1, y2, . . . , yn is the observation sequence generated by a HMM, and δ be the initial distri-
bution which is assumed to be same as the stationary distribution implied by the transition
probability matrix Γ, then the likelihood function is the following:

L = δΓP(y1)ΓP(y2) . . .ΓP(yn)1
′
. (6)
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We use numerical maximization of the likelihood for estimating the parameters of the HMM.
Given some observed sequence O = (O1, O2, . . . , Or) of outputs, we wish to obtain the state
sequence S = (S1, S2, ..., Sr) that has the highest conditional probability. Prediction of most
likely sequence of states for each time point t by maximizing the joint probability is known
as global decoding. Global decoding can be done using Viterbi algorithm and the details of
this algorithm can be found in Viterbi (1967) and Zucchini and MacDonald(2009).

3. Modeling of Dengue Fever Death Counts

The monthly series of death counts due to Dengue fever in Kerala from 2006 January to 2015
December is displayed in Table 3.1 and in Figure 3.1.

Table 3.1: Monthly series of the number of deaths due to Dengue fever in Kerala from 2006
January to 2015 December

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015

Jan 0 0 0 0 0 0 1 1 0 0
Feb 0 0 0 0 0 0 1 2 0 1
Mar 1 0 1 1 1 1 1 0 0 1
Apr 1 0 1 0 1 0 0 0 2 1
May 1 0 1 1 0 0 1 0 7 2
Jun 0 3 6 6 1 6 1 0 6 10
Jul 1 0 4 2 3 0 0 0 8 3
Aug 0 0 1 0 3 2 0 1 1 2
Sep 0 0 1 3 3 0 0 3 3 1
Oct 1 0 2 0 1 2 0 3 0 3
Nov 0 0 0 1 0 0 1 0 1 5
Dec 0 0 0 2 0 0 0 0 1 0

For the data given in Table 3.1, the variance = 3.3277, which is much larger than the mean
= 1.1583. Hence a single Poisson distribution will not be a good choice to represent the data.
Since the unimodality of the data is in doubt it is tested using Hartigans’ Dip Test. The
value of the Dip test statistic obtained is 0.1375 with a p value 2.2 × 10−16. As the data
is multimodal let us try independent mixture of Poisson models and Poisson hidden Markov
models to describe the data.
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Figure 3.1: The number of deaths occurred in Kerala due to Dengue fever in 120 consecutive
months (from 2006 January-2015 December).

3.1. Fitting of Independent Mixture of Poisson Models

The proposed mixture model is (1) where

pi(y) =
eλiλyi
y!

;λi > 0, y = 0, 1, . . .

and 0, elsewhere. Then the likelihood given in (2) takes the form:

L(λ1, . . . , λm; δ1, . . . , δm|y1, . . . , yn) =
n∏
t=1

m∑
i=1

δi
eλiλyti
yt!

; yt = 0, 1, . . . . (7)

Using R code one can maximize logarithm of (7) and estimate the parameters δ and λ
constrained by

∑
δi = 1 , δi, λi > 0 for i = 1, 2, . . . , m.

Independent mixtures of two, three and four Poisson models are fitted and their Akaike Infor-
mation criterion (AIC) and Bayesian Information Criterion (BIC) values are also computed
for model selection. AIC and BIC are respectively defined as follows:

AIC = −2 log L + 2 p

BIC = −2 log L + p log n

where log L is the log-likelihood of the fitted model, p denotes the number of parameters of
the model and n, the number of observations. More details regarding model selection can
be seen from Zucchini (2000). The different models fitted and their AIC and BIC values are
shown in Table 3.2.
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Table 3.2: Independent mixture of Poisson models fitted to the series of the number of
deaths due to Dengue fever.

Number of
components (m) i δi λi - log L AIC BIC Mean Variance

of independendent
Poisson

mixture model

m=2 1 0.8542 0.5786
2 0.1458 4.5560 201.6819 409.3638 403.7463 1.1583 1.9696

m=3 1 0.6287 0.3728
2 0.2836 1.5018 195.5715 401.143 415.0805 1.1583 2.2136
3 0.0877 5.6784

m=4 1 0.2837 0.3728
2 0.3450 0.3728 194.6919 403.3838 422.8962 1.1583 2.2136
3 0.2836 1.5018
4 0.0877 5.6784

From Table 3.2 one can see that AIC selects three-component whereas BIC selects two-
component independent Poisson mixture models.

Since independent mixture model ignores the possibility of serial dependence of observations,
HMMs are now considered. We shall next fit Poisson-hidden Markov models to the data given
in Table 3.1. We shall fit Poisson-HMM with one, two, three and four states to the data.

3.2. Fitting of Poisson-Hidden Markov Model

To fit a stationary Poisson-HMM we have to estimate δ, λ and Γ by maximizing the like-
lihood given in (7). Obviously, maximization of (7) and estimation of parameters are to be
done subject to the following constraints:

λi δi > 0, i = 1, . . . ,m,

m∑
i=1

δi = 1,

m∑
j=1

γij = 1 and γij ≥ 0 ∀ i, j.

By suitable reparameterization, unconstrained maximization of the likelihood is possible and
the estimates can be obtained by using numerical optimizer nlm available in R.

The estimates of the transition probability matrix Γ obtained by R code for different states
are given below.

For two-state Poisson-HMM, the estimate of Γ obtained is the following:

Γ =

(
0.9051 0.0949
0.4122 0.5878

)
.

The three-state HMM has

Γ =

 0.8504 0.1496 0.0000
0.4148 0.4584 0.1268
0.0000 0.6216 0.3784


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and the four-state model has

Γ =


0.9157 0.0843 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000
0.3613 0.0000 0.6387 0.0000
0.0000 0.0000 0.6893 0.3107

.

The corresponding estimates of δ and λ are shown in Table 3.3. AIC and BIC values for each
fitted model are also shown in Table 3.3. On comparing AIC and BIC values of all the fitted
models in Table 3.2 and Table 3.3, two-state Poisson-HMM has the least values. Hence AIC
and BIC both select two state HMM.

Table 3.3: Poisson-hidden Markov model(P-HMM) fitted to the number of deaths occurred
due to Dengue fever.

Model i δi λi - log L AIC BIC Mean Variance

1-state P-HMM 1 1 1.1583 211.2421 424.4842 426.4842 1.1583 1.1583
2-state P-HMM 1 0.8129 0.5007

2 0.1871 3.9658 171.4762 350.9524 362.1024 1.1485 2.9754
3-state P-HMM 1 0.6972 0.3802

2 0.2515 2.1674 168.6712 355.3424 380.4299 1.1472 3.327
3 0.0513 6.5690

4-state P-HMM 1 0.6944 0.4222
2 0.0586 1.2675 165.0656 362.1311 406.731 1.1447 2.5603
3 0.1621 1.8244
4 0.0849 5.6718

The autocorrelation function (ACF) of the data and the fitted two-state and three-state
HMMs are given in Figure 3.2. It is clear from the figure that the ACF of two-state and
three-state HMMs correspond well to the sample ACF.

Figure 3.2: The ACF of data and fitted HMMs.
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The autocorrelation of fitted two-state and three-state HMMs for k = 1 are computed using
(5) and the values are 0.412 and 0.369 respectively. The autocorrelation of the data series for
k = 1 is 0.345.

Prediction of the most likely sequence of Markov states given the observed data set (decoding)
of two-state Poisson-HMM is done using Viterbi algorithm and is given in Table 3.4.

Table 3.4: The most likely sequence of hidden states of two-state Poisson-HMM given
observed data series.

1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 1
1 1 1 1 1 2 2 1 1 1 1 1 1 1 1 2 2 2 2 2 2 1 1 1
1 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 2 2 2 2 2 2 2 1

Using R the state predictions of death counts in the months of the year 2016 based on two-
state Poisson-HMM is given in Table 3.5.

Table 3.5: State prediction using two-state HMM: the probability that the Markov chain
will be in a given state in the specified month of 2016.

Year 2016 Jan Feb Mar Apr May Jun Jul Aug Sept Oct Nov Dec
State=1 0.8838 0.8479 0.8308 0.8229 0.8198 0.8190 0.8194 0.8204 0.8217 0.8230 0.8245 0.8260

2 0.1167 0.1536 0.1723 0.1818 0.1868 0.1895 0.1909 0.1919 0.1926 0.1931 0.1935 0.1939

The actually observed deaths in the months from January 2016 to December 2016 were
1, 1, 0, 0, 2, 4, 3, 4, 1, 3, 0, 2 respectively. The respective states of the Markov chain to which
these observations assigned are 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1; shows the consonance of the ob-
served values with the fitted model.

4. Discussion

Standard model for unbounded counts, the Poisson distribution is inappropriate for the
Dengue fever death count data considered in this study as the data is an overdispersed one.
The sample autocorrelation function of the Dengue fever death count data displayed in Fig-
ure 3.2 shows a clear indication that the observations are serially dependent. As the Dengue
fever death counts are serially dependent, an independent mixture of Poisson models found
to be inappropriate. So we considered independent mixture models with one, two, three and
four components and Poisson-hidden Markov models with two, three and four states. The
independent mixture models do not perform well relative to the Poisson-HMM for the death
count data. Of the seven models fitted, two-state Poisson-HMM has the lowest AIC and BIC
values. Thus the best fitted model is the two-state Poisson-HMM having stationary distribu-
tion δ = (0.8129, 0.1871) and state dependent mean vector λ = (0.5007, 3.9658). On studying
the Viterbi path of states of two-state HMM in relation with the number of deaths it is found
that state 1 corresponds to less than 3 deaths and state 2 corresponds to more than 3 deaths.
If there are 3 deaths then it may be labeled as either state 1 or state 2. Analyzing the Viterbi
path of hidden states of the process it is clear that the process is in state 2 when Kerala has
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rainy season, an environmental factor which causes Dengue fever. Normally Kerala has an
average rainfall of more than 250mm during May to November. The temperature of Kerala
ranges from 18oC to 40oC, except in hill stations, which is another favorable environmental
factor that helps the growth of Dengue virus carrying mosquitoes. The probability that the
Markov chain will be in a given state in the next twelve months shown in Table 3.6 is in
concordance with the sample observations. The present study reveals that HMMs can be
successfully used in identifying the environmental factors which influence a stochastic pro-
cess. The algorithms required for numerical computations are quite simple and availability
of necessary R codes make the parameter estimation easy. When we fit models with three or
more states to relatively short series of observations the estimates of one or more transition
probabilities turnout to be very close to zero.
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