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Abstract

Aerial wildland fire fighters have a unique challenge. They are able to fill their tank
with water via a nearby body of water, drop this water on a fire, then return to repeat this
process. For a given fire, the replications of the fills and drops are multivariate time series
measured in space, and this data structure allows us to compare replications over space
and time. We use control chart methodologies to determine which time series were unlike
the others, then examine the data from both a univariate and a multivariate viewpoint to
determine potential causes.
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1. Introduction

Piloting a fire bombing aircraft over an active wildland fire is an inherently difficult task that
is made even more difficult by the long working hours in demanding conditions. Wildfires are
fought in order to protect the values at risk (life, property, timber values, to name a few).
The safety of the individuals performing these duties is a primary concern.

Many studies have been done on pilot fatigue and performance for commercial airliners.
Fatigue has been shown to come about through scheduling (Jackson and Earl 2006; Goode
2003) or length of flight (Strauss 2010). The performance of pilots in stressful (military)
environments was investigated by Miller, Matsangas, and Shattuck (2008), which suggested
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that sleep disruption, sleep restriction, long shift work, or shifts that disrupt the circadian
rhythm are especially dangerous in stressful military environments.

The research above has been performed on commercial and military flights, which are inher-
ently different from those faced by aerial wildfire pilots. For example, the most difficult part
of a commercial flight is often the take off and landing and these only happen once per shift.
As discussed below, aerial fire fighting is considerably more stressful.

There are two types of fire bombing aircraft: a skimmer that scoops water which is dropped
on the fire, and an airtanker which drops fire retardant on the fire. The skimmer is able
to refill its water tank repeatedly within a shift. The refilling process requires a descent to
the surface of a body of water, skimming the water for a short period of time to fill the
tank prior to ascending again. Skimmer aircraft, on 4 hours of fuel, can cycle through up
to 40 takeoffs and landings, returning for fuel for another 4 hours of landings, takeoffs, and
bombing. The airtanker is loaded once each shift with fire retardant at a designated airport
(Airtanker Base). Although the airtankers that haul fire retardant make fewer drops than
the skimmers the flying conditions are the same. Fire bombing requires both types of aircraft
to work in mountainous terrain, windy conditions and often with poor visibility conditions
together with numerous other aircraft in a small airspace.

Our objectives are to present an exploratory data analysis (sensu Tukey 1977; Brillinger
and Finney 2014) with a focus on evaluating portions of the flights where there may be
anomalous flying behaviour. We employ techniques from Statistical Quality Control (see
Montgomery 2009) to identify possible outliers in the data, and then investigate these outliers
using multivariate time series visualization techniques to assess a univariate time series with
vaguely periodic structure. Thus, we effectively extend multivariate visualization techniques
to accommodate replicated time series, and introduce techniques for detecting possible changes
in ordered replicates of a time series. We have found it useful, as well, to incorporate spatial
information into the analysis. All of these techniques are complementary and should be
evaluated together.

Our data include 130 aerial fire fighting flights from the 2016 fire season in British Columbia
and Alberta, Canada. Each flight contains variables on the plane’s location, orientation, and
speed recorded each second. The numbers of fill and drop events vary between flights, and
there are epochs within many of the flights where the pilot flew in a holding pattern while
awaiting specific instructions.

As a case study, we focus on a single flight during the major wildfire in Fort McMurray,
Alberta (Nash, St Arnaud, Tithecott, Simpson, Stocks et al. 2017). This fire caused an
estimated $3.7 billion in insured losses and burned a total of 589,552 hectares. There is an
airport in Fort McMurray that many of the aerial fire fighters flew out of, but this also meant
that the pilots’ refueling downtime was spent in the community that was threatened by the
fire. Despite the abundance of risk, there were no reported incidents with any of the pilots
fighting this fire. Nonetheless, the Nash et al. (2017) report recommends improvements to
the planning and management of airspace in order to further increase pilot safety.

The paper is structured as follows. In Section 2, we look at basic plots of the data to determine
the obvious outliers and demonstrate the need for more sophisticated visualization. Section
3 briefly outlines the control charts used for this data and provides several visualization
techniques for anomalous patterns in univariate and multivariate data as well as an overall
learning or fatigue effect. Section 4 summarises the visualizations presented in this paper
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with a tool that flight controllers could use in real time. Section 5 concludes the paper with a
summary of the visualizations presented and a discussion of their applicability to other data.

2. Description of the Data

The raw data consist of unstructured time series with observations recorded each second on a
number of variables including 3-dimensional spatial coordinates. An example is displayed in
Figure 1, where we consider Angle of Attack. In Panel (a), we see the entire trace, with the
times of drops and fills identified. In Panel (b), we display the traces for each of the replicated
segments of that same flight. These flight segments are of different duration, since the times
between skimming events vary.

The variables recorded include: orientation (pitch, roll, and, yaw), location (latitude, longi-
tude, and altitude), accelerometer readings, and the angle of attack. Pitch, roll, and yaw are
all measured relative to level flying. Dipping the nose of the plane up and down changes pitch,
dipping one wing down and the other wing upwards changes the roll, and rotating the plane
while keeping it level changes the yaw. Angle of attack is defined as the angle between the
air flow and the fuselage. The critical angle of attack is where the plane has maximum lift;
an angle of attack of 0 means the plane is flying directly into the window (usually indicating
level flight), and a higher angle of attack puts the plane at risk of stalling. The critical angle
of attack is usually between 15 and 20 degrees. Because this can be measured directly and
can be interpreted in terms of lift, regardless of speed, the primary focus of our analysis will
be the angle of attack data.

The location of each fire has a different topography which forces the pilots to perform different
manoeuvres for fills on different days. Events, such as dropping water on the fire are repeated
several times over the course of the flight, but the pilots are often faced with varying wind
conditions throughout the flight and may receive new instructions as the fire changes. There
are often other planes working on the same fire so the pilots necessarily adjust their behaviour
to maintain a safe distance from other planes. There is also a chance that the fire grows
unexpectedly in a new direction, requiring the pilots to adopt entirely new strategies mid-
shift.

The overall inhomogeneity of the time series poses inferential challenges, but by exploiting
the quasi-periodic structure of the fills and drops, we can make some progress. For example,
by assuming that flying behaviour at the time of skimming should always follow the same
pattern, we can assess the these skimming epochs for anomalies. Through visualization,
we can incorporate information from univariate control chart methodology, 3-dimensional
spatial locations of the time series, and other variables measured throughout the flight into
an insightful exploratory analysis.

Any anomalies that are detected should not be immediately interpreted as pilot error. The
flight conditions are challenging and the recorded data contain measurement error. There are
no reports of any incidents in any of our data. The ultimate purpose of these analyses is to
highlight potential areas of excess risk and present them to the pilots and the flight managers
who will then make the appropriate decisions.

The amount of water in a skimmer’s tank is one of the recorded variables. If we let T1/2
denote a time epoch when the volume of water in the tank is increasing through the halfway
point, the interval T1/2− 15, T1/2 + 15 is a useful observation time window. We can construct
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Figure 1: An example flight from the Fort McMurray fire. The raw data (a) is a time series
with replicated events (b).

an ordered sequence of replicated time series by extracting observations in such windows.
Figure 1(b) shows such replicated time series for the Angle of Attack observations. We make
the assumption that the pilot was attempting the same approach for every fill, regardless of
what happened in other fills. In other words, we assume that these replicated time series are
independent and identically distributed. The visualizations that we employ are intended to
detect deviations from this assumption.

In addition to the structural inhomogeneity described above, most of the variables in the
multivariate time series are correlated. Changing any of the orientation variables will cause
a change in the accelerometer readings in accordance with the magnitude of the change. The
pitch and roll change smoothly with each other during turns but not during straight sections
of flight. The angle of attack is heavily correlated with the pitch and wind direction, but only
the pitch is recorded.

3. Identifying and Visualizing Outlying Patterns in Time Series

3.1. Identifying and Visualizing Outliers: Univariate Case

Identifying Outliers

Our approach to the visualization of these time series data exploits control chart methodol-
ogy where one wishes to determine whether a particular sample is different from the others
(Shewhart 1925).

We employ two techniques to attempt to make the data independent and identically dis-
tributed so that standard control charts apply. The first technique involves finding the median
value of the angle of attack across fills at each time point. This creates a single median fill
(the trend) which is then subtracted from all of the other fills. The second technique finds
the second difference of the value of the angle of attack for each fill. In both techniques,
the mean and standard deviation of the resulting fills are monitored with Shewhart control
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Figure 2: Outliers from the various control chart methods. The non-outliers are transparent
so that the overall trend can still be seen. The numbers are the number of the fill within the
flight.

charts. We refer to these two methods as detrended and 2nd difference control charts, respec-
tively. We also consider a control chart from Hyndman and Shang (2010) based on spline
estimates of each fill. The coefficients of the spline bases are found and then decomposed into
principal components. Outliers are labelled based on whether the first two principal compo-
nents lay outside of a bivariate boxplot (a.k.a. bagplot). We refer to this method as FPCA
(Functional Principal Components Analysis). Finally, we use a control chart that monitors a
non-parametric estimate of the variance for unusual values based on the χ2 distribution (Chi2

control charts, Zhang and Albin 2009).

The different charts have different purposes. The detrended control charts will theoretically
detect fills that were far from the median or have high standard deviation relative to the
median. The second difference control chart should detect outliers with a strong trend (or a
weak trend, since the control limits are symmetric). The FPCA chart should detect fills with
a different trend compared to the others, and the Chi2 chart should detect fills that vary from
the median fill in a different way compared to the others.

The control charts for these data are shown in Appendix A. In the sequel, we will be primarily
concerned with the binary decision of whether or not a particular fill pattern is an outlier.
We will use the identification of an outlier as an indication that the particular fill requires
further investigation.

Visualizing Identified Outliers

Figure 2 shows the fills again, now colour-coded according to which control chart methodology
identified a given fill as an outlier. With the exception of the two green lines, the particular
combination of control chart labels are sufficient to uniquely identify a fill (i.e. there is only
one orange, one purple, and one blue fill).

The orange fill was labelled as an outlier by both s charts as well as the Chi2 chart, which is
expected as it has “spikes” that induce variance effects that are different from the other fills.
The FPCA control charts did not signal this fill as an outlier since it follows essentially the
same trend as the other fills and the large spikes were removed in the spline smoothing step
of the algorithm. The large negative spike near t = 2 indicates that the aircraft had less lift
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while taking off after skimming. As this was the first fill in the flight, we might be seeing
evidence of a learning effect as the pilot is becoming accustomed to the flying conditions.

The purple fill is the only fill identified as an outlier by the FPCA chart, likely because all of
the deviations from the trend are in the negative direction. A possible interpretation is that
the nose of the plane was tilted downward excessively, or the airspeed was not high enough
to generate lift. Both interpretations are suggestive of difficulty.

At the beginning of the blue fill, the angle of attack was unusually low, while after this fill,
the angle of attack was higher than expected. This is likely why the Chi2 chart signalled it
as an outlier, since this form of deviation is different from the deviation of other fills. The
detrended s charts also detected this outlier since having observations that are consistently
far from the median fill will result in high variance. The pilot may have recognized that he
descended to the water too slowly and attempted to correct this on the way back up.

3.2. Identifying and Visualizing Outliers: Multivariate Case

Figure 3 shows examples of multivariate plots for time series with replicates. The column
of plots in Figure 3 (a) is an extension of Figure 2 (b) where all of the variables of interest
are plotted with a consistent time axis for ease of comparison. The fills are colour-coded as
in Figure 2 in order to determine whether the outlying angle of attack observations coincide
with anomalies in other variables.

The orange fill was discussed in the previous section, but we now see that all of the other
variables appear to have anomalous behaviour during this fill. The large negative spike at
t = 2 in the angle of attack is also visible as a large positive spike in pitch. For some reason,
this fill exhibits a higher degree of variability than the other fills.

The purple fill in Figure 2 was noteworthy for having spikes that were uniformly smaller
than in the other fills. Anomalous accelerometer readings indicate that the pilot was taking
corrective action.

The plots on the right in Figure 3 provide two perspectives on the same bivariate replicated
time series plot. The colour codes indicate whether the fill was an outlier in neither variable,
only in angle of attack, only in pitch, or in both. Note that the control charts are not
multivariate. This sort of colour scheme could also be used in Figure 3 (a), but we wanted
to keep the colour scheme consistent with previous plots and to highlight the orange fill’s
persistence as an anomaly.

The orange fill appears again in Figure 3 (b) and (c) (now coloured black) as a spike towards
the edge of the cube. This indicates that it was a spike in both angle of attack and the pitch
of the plane. Contrast this to the fill coloured in red, which had a spike in angle of attack
but not in pitch. Since the angle of attack measures the difference between the angle of the
wind and the angle of the plane, a spike in angle of attack that is not present in pitch may
simply indicate a gust of wind.

Spatial Variation as an Attributable Cause

The spatial location is a special case of multivariate time series. We expect the angle of
attack to be different under different wind conditions, which may occur when a plane skims
two different bodies of water. We similarly expect slightly different behaviour if one skimming
location has a longer approach than another and both are visited in a single flight. This spatial
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Figure 3: Multivariate plots for evaluating outliers. (a) shows the other variables, coloured
based on whether they were an outlier in the control charts for angle of attack. The orange
fill and the blue fill are noteworthy in all of the other variables, indicating that something
went wrong in this fill. Outlier fills that don’t show up in other variables may be simply due
to a gust of wind. The plots in (b), (c), and (d) are different views of a bivariate time series
plot of angle of attack and fill, coloured by whether the fill was an outlier in neither, both,
or one of the two. These two variables are only sometimes correlated (angle of attack is a
function of pitch, roll, yaw, and wind direction).
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Figure 4: (a) Map of the fills (blue dots) and drops (red dots). The colours are the same
as those in Figure 1 (b), where green represents earlier fills. The first 3 fills happened at a
different lake. Map data ©2018 Google. (b) A three dimensional plot where the height of
the line is the angle of attack rather than the altitude (positive angle of attack means that
the plane is generating lift). Orange dots are placed at t = 0 for each fill with grey lines
drawn to indicate location on the map. Black lines represent fills that were outliers in at least
one control chart. The fill with a large spike near the back of the map (orange in previous
sections) was one of the first fills and happened in a different lake from the others. Map data
©OpenStreetMap contributors.

variation is especially pronounced in drop events, where the updrafts from the fire and the
height from which the plane drops the water will likely affect the other variables. However,
it is not reasonable to create a control chart that labels fills as outliers because they were
performed at a different latitude. None of our control charts take spatial variation into account
directly. Instead, we can visualize spatial representations of our data to determine whether
the variation is due to location.

In Figure 4 we can see that the plane visited two different lakes during this flight. The colours
in 4 (a) indicate that it was the earlier fills that occurred in a separate lake. The fill with
the large spike (coloured orange in the previous sections) is shown in Figure 4 (b). This large
spike occurred in the very first fill in a different lake than most of the other fills, which might
explain why it appeared as an outlier.

Exploring Learning and Fatigue as a Possible Attributable Cause

A shortcoming of Figure 2 is that it does not take the order of the fills into account. In long
flights with many fill events, it is reasonable to think that the pilot may become fatigued.
Conversely, the pilot may take a while to acclimate to the conditions at the start of each flight,
i.e. a learning effect. Three visualizations for a possible learning/fatigue effect are given in
Figure 5.

Figure 5 (a) groups all of the fills into three temporal categories (first third of fills, middle
third, and last third). Within each group, the 1st and 3rd quartiles of angle of attack are
computed at each time point. These quartiles are visualized with a ribbon that shows the
change in the middle 50% over time. This is intended to visualize broad changes in patterns
between the fills rather than individual outliers.
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Figure 5: (a) Interquartile ribbon plot of detrended fills, showing that later fills (purple) had
a different trend than earlier fills. (b) A stalagmite plot to determine if there’s a smooth
learning/fatigue effect for later fills. The z axis is angle of attack and the colour is red for
low angle of attack and yellow for high. The first fill is closest to the viewport, the last fill
is furthest away. (c) A time series strip chart, which is essentially the stalagmite plot shown
from above. All three plots are attempting to determine if there’s a learning/fatigue effect,
but (b) also labels outlier fills by the control chart that detected them.

Before the time t = 0, the ribbons mostly overlap. Between t = 5 and 10, the later fills appear
to have a much lower angle of attack. We cannot conclude that this is due to error or if it’s
intentional, but there appears to be either a learning or a fatigue effect. These plots have
been made for several different flights and this pattern remains consistent.

In addition to the trend in Figure 5 (a), the vertical height of each ribbon indicates the
interquartile range. The purple ribbon (fills 12 to 17) appears much thinner (less variable)
from t = 0 to 10, which may indicate that this is indeed a learning effect rather than a fatigue
effect.

The second plot is known as a stalagmite plot (see Albert-Green, Braun, Martell, and Woolford
2014). Both the height and colour of the lines are based on the value of the angle of attack.
This is essentially Figure 1 (a) with the fills extended onto a third axis. The colour allows us to
see a slight diagonal pattern in the red and yellow, which may corroborate the learning/fatigue
effect observed in the interquartile ribbons plot.

The figure on the bottom row is a time series strip plot that is essentially the stalagmite
plot shown from above. This is adapted from Peng (2008), which used this type of plot to
visualize correlation between variables in a single observation of a multivariate time series.
The learning/fatigue effect can be seen in the diagonal strip of yellow, but we can also see
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that the effect is stronger in the first few fills. Another advantage of this plot is the ability
to label the outliers, which allows for a visual check of why the fill was flagged as an outlier.
It also shows the distribution of outliers over the course of the flight - it appears that there
were more outliers earlier in the flight, again indicating a learning effect rather than a fatigue
effect.

4. Operationalized Visualizations for Flight Managers

It is perhaps overly ambitious to suppose that an inference procedure will adequately explain
the inhomogeneity in one flight, and even more ambitious to suppose that a single inference
procedure would be appropriate to all flights in one season. The visualizations that we have
presented can be used to address many issues that may occur while flying, but they only
apply to one flight at a time.

Figure 6: Screenshot of a “dashboard” made using shiny. Maps are ©2018 Google.

To investigate a season of flights, the code used to produce the above visualizations can
be applied to other flights and variables. Using R’s shiny and cowplot packages (R Core
Team 2018; Chang, Cheng, Allaire, Xie, and McPherson 2018; Wilke 2018), the plots can be
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arranged as an application for researchers.

An example is shown in Figure 6, which shows the same flight as in the previous sections,
but looking at roll rather than angle of attack and drops rather than fills. The interquartile
ribbon plot in Figure 6 shows a different pattern for later fills. The map indicates that these
later drops were performed at a different compass bearing. Thus, the difference is likely due
to the wind direction. This insight is confirmed by the multivariate plot, which shows that
all of the drops are essentially unremarkable in the other variables.

5. Discussion

In this paper, we have introduced and/or utilized several visualizations for outliers in repli-
cated multivariate time series data that reveal important features. These visualization tech-
niques are applied to aerial wildland fire fighting data, but are applicable to other sequences
of time series.

Figure 1 (a) and (b) demonstrate the complex nature of our particular dataset and motivate
our reasons for using more sophisticated visualization tools. Figure 2 (b) is the same as Figure
1 but with outliers labelled based on control chart methods. These plots indicate why certain
fills were labelled as outliers, but they also highlight the types of outliers that each control
chart is able to detect. This plot justifies our use of several different control charts.

Figure 5 (a) - the interquartile ribbon plot - is a novel way to discern the presence of a
learning/fatigue effect. We acknowledge that, in our context, the interquartile ribbons are
based on a small amount of data (5 or 6 fills). Having more observations would improve the
precision when estimating the ribbon. However, they act as an early warning signal that there
may be such an effect present. Figure 5 (b) - the stalagmite plot - is a way to interactively
visualize this learning/fatigue effect in the raw data. One can rotate the box and zoom-in-
and-out when viewing such a plot in R. Figure 5 (c) - the time series strip plot - shows this
effect while also indicating which fills were outliers. By presenting the outliers this way, it is
easier to discern between a learning effect and a fatigue effect. If there are more outliers in
earlier (later) fills, then it is possibly a learning (fatigue) effect.

The multivariate plots in Figure 3 allow us to assign causes to the outliers. By our knowledge
of the likely correlations in our data (e.g. angle of attack’s relationship with pitch), we are
able to differentiate between an outlier due to the pilots actions versus one due to external
sources, such as a possible gust of wind.

The same analyses apply to all of the variables for both drops and fills during all flights
in our data set. Since this quickly becomes an overwhelming number of plots, work has
been done to consolidate this work into a manageable form. Using R’s shiny (Chang et al.
2018) and cowplot (Wilke 2018) packages, a matrix of the plots in the paper can easily be
constructed such that all of the relevant variables can be investigated through an interactive
interface. This interface is shown in Figure 6. With appropriate data collection techniques
and sufficiently robust data cleaning code, this application can be used in real time by flight
managers during a wildfire. For other applications, this application represents a method for
extending the analyses to multiple observations of replicated multivariate spatial time series.

Many different control chart methods were explored in our analysis of the data. We presented
results that revealed salient features. However, there are other methods that may be more
applicable if one was analyzing multivariate time series replicates in a different context. For
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instance, analysis of the residuals of time series processes (Psarakis and Papaleonida 2007)
and analysing ARMA parameters with a Hotelling’s T2 control chart (Hotelling 1947; Apley
and Tsung 2002). The methods presented in this paper were chosen to be contrasted with
each other; each method represents a different assumption about the structure of the data.
Our emphasis was an exploratory data analysis of these data. Although these control chart
methods may not be perfectly suited to such data, they were shown to be useful for identifying
outliers which can then be inspected for attributable causes.

We have previously attempted to quantify the learning/fatigue effect by studying the number
of outliers early in the flight versus later in the flight. We also considered the time since
the pilot’s most recent flight as well as the total flight time in the past seven days versus
the number of detected outliers. However, the learning/fatigue effect may be obscured by
the anomalous fills that can be attributed to causes outside of the pilots’ control. For these
reasons we were unable to make any firm conclusions about the presence of learning or fatigue.

Buja, Cook, Hofmann, Lawrence, Lee, Swayne, and Wickham (2009) provide a method of
statistical inference based on data visualization that could be used to evaluate the learn-
ing/fatigue effects. By randomly permuting the order of the fills in Figure 5 (c) we remove
any possible learning or fatigue effect. The permuted data can be presented along with the
original data to many individuals and we can get them to identify the plot that has a pattern.
By showing this to many individuals we can get an estimate of the probability that a flight
is identified as having a pattern. After doing this for many different flights, we can compare
the probability of a flight having an identified pattern against the time since the most recent
flight. If there is a relationship between these two variables then we would conclude that there
is indeed a learning or a fatigue effect. Individuals can be contracted for such tasks through
Amazon’s Mechanical Turk platform (Amazon 2008).
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Appendix A. Control Charts for Angle of Attack (AoA)
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