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Abstract

In this paper we consider bivariate point patterns which may contain both attractive
and inhibitive interactions. The two subpatterns may depend on each other with both
intra- and interspecific interactions possible. We use area interaction point processes for
quantifying both attractive and inhibitive interactions in contrast to pairwise interaction
point processes, typically model regular point patterns. The ability to permit both at-
traction and repulsion is a valuable feature and allows for the modelling of different forms
of interactions in a given community. The differentiation between intra- and interspecific
interactions in one model accounts for the fact that the presence of a second species may
“mask” or “magnify” existing intraspecific interactions. A Bayesian approach has been
applied for estimating interaction parameters and for discriminating between eight com-
peting research hypotheses. For the particular application to modelling the interactions of
species in a highly biodiverse forest, this study reveals posterior support for an interspe-
cific interaction of attraction between the two species considered and may serve to inform
forest rehabilitation schemes relating to this forest. Overall, knowledge of the interactions
of key species in any given forest would be invaluable to reforestation efforts if this forest
is later ravaged by wildfires.
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1. Introduction

The quantification of interspecies interactions is important for ecological studies, particularly
those for which species coexistence (Turnbull, Levine, Loreau, and Hector 2013) is of primary
interest. Interspecies interactions may assume one of three forms, attractive, inhibitive (re-
pulsive) and neutral (no interaction). The area of interaction (or zone of influence) for a given
plant denotes the zone around that plant within which it accesses vital resources (Casper,
Schenk, and Jackson 2003). Plants which exhibit a highly regular spatial pattern are most
likely to be repulsive to each other such that they inhibit sharing of resources (such as soil
nutrients and sunlight) with another plant (due to competition) and thus inhibit coexistence
in close proximity. Certain plants may appear to exist in close spatial proximity to other
plants due to a symbiotic (Tedersoo 2017) relationship between these plants.

In this paper we model the species interactions in a data set consisting of observations of two
plant species (a bivariate point pattern). It is important that the model adopted incorporates
the zone of influence of the species under consideration. The area interaction point process is
a useful choice to model a bivariate point pattern data set as it allows for the incorporation
of the above-mentioned ecological concept of both attraction and repulsion.

2. Data

The statistical approach has been motivated by data from a highly diverse plant community
(67 species, 6385 plants) in Western Australia (Illian, Møller, and Waagepetersen 2009). The
two species are Astroloma xerophyllum (n = 91) and Banksia menziesii (n=25). Figure 1
shows the bivariate point pattern formed by the species pair. From the plot it is very difficult
to visually detect any spatial correlation between the points representing the two species,
however, the plot provides an indication (though not on an inferential level ) of the position
of the plants in relation to each other. Figure 2 shows plots of the univariate point patterns
representing each species considered in the analyses. In addition, discs are drawn around each
point of the pattern to denote the area of interaction (or zone of influence) associated with
that plant. The interaction radius used for the discs for each species was calculated using
biological information, specifically, the average circumference of the root network of the plants
involved. This illustration provides a visual description of the degree of overlap between the
zones of influence per univariate pattern. From these plots we can observe at a general level,
that the degree of overlap of zones of influence is highest in the univariate point pattern for
A. xerophyllum. The point pattern represented by the plant community from which the two
species originate is depicted by Figure 3.

The species Astroloma xerophyllum is categorized as a reseeder whilst Banksia menziesii is
categorized as a resprouter (Bell and Ojeda 1999). Reseeders respond to a fire stimulus by
shedding seeds whereas the response of the resprouters is to regenerate from the remaining
underground roots or tubers which were not destroyed by the fire (Atwell, Kriedemann, and
Turnbull 1999; Kruger, Midgley, and Cowling 1997). We wish to investigate the intraspecific
and interspecific interactions existing within the species pair. Biological literature suggests
that there is a relationship of attraction between reseeders and reprouters (Bell and Pate
1996; Bell 2001; Read 1995), however the quantification of this interaction has not yet been
done.
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Figure 1: Plot showing the bivariate point pattern for the species pair comprising of As-
troloma xerophyllum and Banksia menziesii. Astroloma xerophyllum is denoted by red filled
circles. The sample area is 220 dm2.

(a) (b)

Figure 2: Plots showing (a) the univariate point pattern for B.menziesii, and (b) the uni-
variate point pattern for A.xerophyllum. The points in each plot are superimposed by the
corresponding discs centered at that point. Each point pattern represents data taken from a
forest of area 220 dm2.
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Figure 3: Point pattern which represents the entire plant community from which the two
species under consideration originate.

3. Exploratory analysis

We now discuss the exploratory analysis of the bivariate point pattern of the species pair to
obtain some preliminary insight on the structure of the pattern.

We employ the pair correlation function to analyse the second order behaviour of the pattern
in each of the univariate patterns, see Figure 4. These functions are commonly used in
summarizing point patterns (Stoyan and Stoyan 1996). The pair correlation functions for the
univariate point pattern of each species are shown in Figure 4. For Astroloma xerophyllum,
the plot of the pair correlation function in Figure 4(a) shows the graph (solid line) generally
above (outside) the simulated envelope of the Poisson process reference line including at
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the interaction radius of 25 dm (determined from biological characteristics of this species). In
addition, the estimated function lies predominantly above (outside) of the simulation envelope
generated from 1000 realizations of a bivariate homogeneous Poisson process. This suggests
that the point pattern may be clustered. This is also supported by the plot of the K-function
for this pattern in Figure 4(c). The associated K-function lies consistently above and outside
of the simulation envelope generated from 1000 realizations of a univariate homogeneous
Poisson process. Overall, neither the pair correlation function nor the K-function converge for
Astroloma xerophyllum, which means that there might be some inhomogeneity in the pattern
as well as clustering and the relative scales of these two processes is hard to distinguish, given
the small number of points.

In contrast, for Banksia menziesii, the graph of the pair correlation function depicted in Figure
4(b), generally lies close to the Poisson reference line and within the simulation envelope for
all the values shown in Figure 4(b). Similarly, the K-function (Figure 4(d)), suggests little
clustering or regularity in the pattern. Care needs to be taken in interpreting these plots since
the species are considered individually, thus ignoring other possible interactions.

The cross pair correlation function was used to analyze the bivariate point pattern and to
detect any spatial dependence between the two species. The cross pair correlation function
measures the spatial dependence (or spatial proximity) between marks within a multitype
point pattern. Figure 5 shows the plot of the cross pair correlation function for the bivariate
point pattern. The plot lies predominantly on the dotted reference line (which represents lack
of spatial dependence/correlation), thus providing no evidence of interaction between the two
species. As above, care needs to be taken when interpreting such preliminary analyses. The
cross pair correlation function only uses interpoint distances (as opposed to area interaction
calculations) to infer spatial dependence. In addition, there are few points in the patterns
and hence estimation is hard - and simulation envelopes will be wide.

The initial exploratory analyses suggest that at the interaction radius of 25 dm there may
be an attractive intraspecific interaction between plants of the species Astroloma xerophyllum
but little evidence for the presence of an intraspecific interaction between plants of Banksia
menziesii. Note that these analyses are based on the separate univariate patterns which are
sub-patterns of the bivariate pattern formed by the locations of the two species. The presence
of a second species or multiple species may affect the intraspecific interactions associated
with each species; either ‘masking’ the presence of an intraspecific interaction or magnifying
existing intraspecific interactions. The presence of another species adds to the complexity of
the interactions involved and in fact, the various factors which affect the interactions of any
given species in an ecological community may oppose or reinforce each other (Levine 2000).

The exploratory analysis for this species pair suggests that the point pattern representing
Astroloma xerophyllum is clustered (with some inhomogeneity) and that of Banksia attenuata
is random. In addition, based on ecological information (Bell 2001) we suspect that there is
more going on (such as a specific ecological association between the two species) than just
one clustered and one ‘random’ pattern - and that by considering more complex models we
can reveal whether this is likely to be the case. We therefore choose instead to adopt a
bivariate area interaction process to model this species pair. In particular, with this model
we can simultaneously assess intra- and interspecific interactions - and use appropriate model
selection to qualitatively compare competing biological hypotheses.
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Figure 4: Plots (a) and (b) show the pair correlation analyses for Astroloma xerophyllum,
and Banksia menziesii, respectively. The solid line represents the plot of the pair correla-
tion function at each distance and the dotted line represents the theoretical value for the
pair correlation under a Poisson model where the interaction is constant at 1 for complete
spatial randomness (CSR). Plots (c) and (d) show the plots of Ripley’s K-function for each
species where the solid line represents the function plotted using the data and the dotted
line represents the theoretical plot for simulated data realized from a homogeneous Poisson
process. The x axis for each plot represents the distance in decimeters. Envelopes (using 1000
simulations from a homogeneous Poisson process) are provided for each plot.
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Figure 5: Plot showing the cross pair correlation function for the bivariate pattern formed
by the species pair with a simulation envelope derived from 1000 realizations of a bivariate
homogeneous Poisson process. The x axis represents the distance in decimeters.
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4. Pairwise and Area interaction processes

We aim to use a model that allows for both attractive and inhibitive interactions among points.
For this reason we consider an area interaction process, also known as the Widom-Rowlinson
‘penetrable sphere mode’ of liquid-vapour equilibrium (Baddeley and Turner 2000). Pair-
wise interaction processes model interactions within and between species. The interactions
are quantified on a scale of 0 to 1 where lower values represent stronger levels of inhibition.
However, pairwise point processes are generally used to model inhibitory interactions whilst
area interaction processes model both inhibition and attraction. The fundamental difference
therefore, between pairwise and area interaction processes lies in the specification of the inter-
action function for each process. For pairwise interaction processes, the interaction function
is expressed as a function of the Euclidean distance between each pair of points in the pattern.
In contrast, the interaction function of an area interaction process is expressed as the area
of the union of discs associated with each point in the point pattern. We specify the radius
of the discs as being equal to the specified interaction radius of the process. For modelling
both attractive and inhibitory interactions we consider area interaction processes. We specify
an interaction radius of 25 dm for each species. The specification of the interaction radius is
based on the interaction radius range described by Illian et al. (2009) for Banksia menziesii
and Astroloma xerophyllum.

In other studies where point processes are used and the specification of an interaction radius
is required, the interaction radius is derived from biological knowledge (Nightingale, Illian,
and King 2015; King, Illian, King, Nightingale, and Hendrichsen 2012; Illian and Hendrich-
sen 2010) and visual inspection of exploratory plots such as the plot of Ripley’s K-function
(Picard, Bar-Hen, Mortier, and Chadœuf 2009). The interaction radius may also be more for-
mally estimated by using a profile likelihood approach (Illian and Hendrichsen 2010; Møller
and Waagepetersen 2003; King et al. 2012).

We consider a bivariate area interaction point process that may be used to model both clus-
tered and regular point patterns (Picard et al. 2009; van Lieshout 2000; Baddeley and Turner
2000; Baddeley and Lieshout 1995). Recall that a bivariate point pattern is a marked point
pattern containing marks with two levels.

4.1. Mathematical notation

For a bivariate point pattern (see Figure 6), let the two species be denoted species 1 and
species 2. The intensity parameters for the area interaction point process are denoted by β1
and β2 which represent the intensity for species 1 and species 2, respectively. The interaction
parameters are γ11, γ22, γ12 and γ21 which denote the intraspecific interaction within species 1,
the intraspecific interaction within species 2, the effect of species 1 on species 2, and the effect
of species 2 on species 1, respectively. The parameter set is θ = {β1, β2, γ11, γ22, γ12, γ21}. We
consider a symmetric area interaction point process, so that we set γ12 = γ21 to avoid the terms
being confounded. The full parameter set for this model becomes θ = {β1, β2, γ11, γ22, γ12}.
Note that for the area interaction point process, γij ≥ 0 ∀i, j. Values lower than 1 represent
inhibition; values greater than 1 represent attraction; and a value of 1 corresponds to no
interaction.

Probability density function
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(a) (b)

(c)

Figure 6: Illustration of the (a) area of the union of the discs representing Astroloma
xerophyllum, the (b) area of the union of the discs representing Banksia menziesii, and (c)
the area of intersection between the two species.
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The density function for an area interaction process in a region of space W (Picard et al.
2009; Baddeley and Turner 2000; van Lieshout 2000; Baddeley and Lieshout 1995) can be
generally defined in the form:

f(x) ∝ βn(x)γ−|Ux,r|, (1)

where n(x), β and γ are the total number of points, the intensity and interaction parame-
ters respectively. The observed bivariate point pattern is denoted by x and the component
univariate point patterns are denoted by x1 (species 1) and x2 (species 2) respectively. Note
that the interaction radius is denoted as r. The term |Ux,r| is expressed as

|Ux,r| =
n⋃
i=1

B(xi, r), (2)

where B(xi, r) is a disc of radius r centered at each data point xi (Baddeley and Lieshout
1995) such that

B(xi, r) =
{
a ∈ <2 : ‖a− xi‖ ≤ r

}
.

Analytically, the term |Ux,r| is the union of the area of the discs of radius r centred at xi
(Baddeley and Lieshout 1995; Baddeley and Turner 2000; Picard et al. 2009).

The area of the union of discs may be expressed as the decomposition of the union of grains,
|Ux,r|, in an inclusion-exclusion style (Picard et al. 2009; van Lieshout 2000). This is expressed
concisely as:

|Ux,r| =
n(x)∑
i=1

|B(xi, r)| −
∑
i<j

|B(xi, r) ∩B(xj , r)|+ ...+ (−1)n(x)+1

∣∣∣∣∣∣
n(x)⋂
i=1

B(xi, r)

∣∣∣∣∣∣ . (3)

The area of the union of discs is related to the interaction parameters of the area interaction
point process (van Lieshout 2000, 2006). In the case of the bivariate pattern, this area can be
decomposed into the area of the union of discs representing species 1 (Ξ) as shown in Figure
6(a), the area of the union of discs representing species 2 (∆) as shown in Figure 6(b), and
the area of intersection between Ξ and ∆ as shown in Figure 6(c). This decomposition of the
area of the union of the discs allows for the marks to be related to the interactions γ11, γ22,
and γ12 as discussed by Picard et al. (2009).

Recall the expression for the decomposition of the area of the union of discs (following Möbius’
inclusion-exclusion theorem) in Equation (3). Based on this expression we write the likelihood
for the bivariate area interaction point process in an inclusion-exclusion style thus allowing
for the marks (m ∈ {1, 2}) to be related to the interactions (Picard et al. 2009). The density
function is given by:

f(x) ∝
M∏
m=1

βn(x)m γ
−|Uxm,rm |
mm

∏
m<m′

γ
|Uxm,rmm′∩Uxm′ ,rmm′ |
mm′ . (4)

For m = 2, this expression becomes

f(x) ∝ βn1
1 βn2

2 γ
−|Ux1,r1 |
11 γ

−|Ux2,r2 |
22 γ

|Ux1,r12∩Ux2,r12 |
12 , (5)

where n1, n2 denote the number of points representing species 1 and species 2, xm, the point
pattern representing species m where m ∈ {1, 2}, rm and rmm′ , the specified interaction radius
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for the interaction between individuals of species m and between species m and m′ and γmm′ ,
the interaction between individuals of species m and m′ respectively.

Note that in this data set, r1 = r2 = r12 = 25dm represent the interaction radii associated
with intraspecific interactions related to species 1, intraspecific interactions related to species
2 and the interaction between the two species respectively. For simplicity, we express the
density function for a bivariate area interaction process as:

f(x) ∝ βn1
1 βn2

2 γ
−A1(x)
11 γ

−A2(x)
22 γ

A12(x)
12

where A1(x), A2(x) and A12(x) denote the area of the union of discs centered at the points
in x1, the area of the union of discs centered at x2, and the area of intersection of A1(x) and
A2(x) respectively. In other words, the areas A1(x) = |Ux1,r1 |, A2(x) = |Ux2,r2 |, and A12(x) =
|Ux1,r12 ∩ Ux2,r12 |. These areas are illustrated in Figures 6(a), 6(b) and 6(c) respectively.

Note that f(x) is only known up to proportionality with the normalization constant analyti-
cally intractable. Thus, we consider the pseudolikelihood which is discussed in the following
section.

Conditional intensity and pseudolikelihood

For a point ξ in x1, in a bounded region W, the conditional intensity is written as:

λ(ξ;x1) =
f(x)

f(x\ξ)
=

βn1
1 βn2

2 γ
−A1(x)
11 γ

−A2(x)
22 γ

A12(x)
12

βn1−1
1 βn2

2 γ
−A1(x\ξ)
1 γ

−A2(x\ξ)
22 γ

A12(x\ξ)
12

= β1γ
−A1(ξ)
11 γ

A12(ξ)
12 .

For ξ ∈ x2, the conditional intensity becomes

λ(ξ;x2) = β2γ
−A2(ξ)
22 γ

A12(ξ)
12

since γ12 = γ21 and A12(ξ) = A21(ξ). We now consider the conditional intensity of a point
um /∈ x using the example of u1 /∈ x. For a point u1 /∈ x, the conditional intensity can be
expressed as:

λ(u1;x) =
f(x ∪ {u1})

f(x)
=

αβn1+1
1 βn2

2 γ
−A1(x∪{u1})
11 γ

−A2(x)
22 γ

A12(x∪{u1})
12

αβn1
1 βn2

2 γ
−A1(x)
11 γ

−A2(x)
22 γ

A12(x)
12

= β1γ
−A1(u1)
11 γ

A12(u1)
12 ,

where A1(u1) denotes the additional area (area of non overlap or single occupancy) con-
tributed by the point u1, to A1(x). This is essentially the difference in area between A1(x)
and A1(x ∪ {u1}). The term A12(u1) denotes the area of double occupancy with respect to
x1 and x2, contributed by the point u1.

The pseudolikelihood PL(θ;x), is the product of conditional intensities (Baddeley and Turner
2000) for each point in the data set and the exponential integrals that replace the previous
intractable normalising constant. Note that γ12 = γ21, but we initially retain the notation
γ12 and γ21 for mathematical simplicity. Thus we have that:

PL(θ;x) =

n2∏
j=1

n1∏
i=1

β1β2γ
−A1(ξi)
11 γ

−A2(ξj)
22 γ

A12(ξi)
12 γ

A21(ξj)
21
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× exp

(
−β1

∫
W
γ
−A1(u1)
11 γ

A12(u1)
12

)
exp

(
−β2

∫
W
γ
−A2(u2)
22 γ

A21(u2)
21

)
∀u ∈W

= βn1
1 βn2

2 γ
−

∑n1
i=1 A1(ξi)

11 γ
−

∑n2
j=1 A2(ξj)

22 γ
2
∑n1
i=1 A12(ξi)

12

× exp

(
−β1

∫
W
γ
−A1(u1)
11 γ

A12(u1)
12

)
exp

(
−β2

∫
W
γ
−A2(u2)
22 γ

A12(u1)
12

)
since A12(ξi) ≡ A21(ξj) and γ12 ≡ γ21.
This expression for the pseudolikelihood can be recast with the following notation for ease of
interpretation and discussion:

PL(θ;x) = βn1
1 βn2

2 γ
−ψ1(x1)
11 γ

−ψ2(x2)
22 γ

2ψ12(x)
12

× exp

(
−β1

∫
W
γ
−ψ∗1(u1)
11 γ

ψ∗12(u1)
12

)
exp

(
−β2

∫
W
γ
−ψ∗2(u2)
22 γ

ψ∗12(u1)
12

)
(6)

where ψ∗1(u1) represents the additional area (single occupancy area) incurred to the union of
discs centered at points in x1 by the addition of the point u1. The term ψ∗12(u1) represents
the additional area of intersection between discs (double occupancy area) centered at points
in x1 and x2 incurred when a point u1 is added to the data x1. Recall that ψ1(x1) represents
the sum of the single occupancy area associated with each point in the data set x1.

The analyses are run using the pseudolikelihood in the standard form transformed into the
canonical form for of ease of interpretation. In the canonical form, the intensity parameter κ
and the interaction parameter η are related to that of the standard form such that β = κη

and γ = η
1
πr2 . The full parameter set for the canonical form is θ = {κ1, κ2, η11, η22, η12}.

We now transform the variables in the pseudolikelihood in Equation (6) to obtain the canonical
form. The corresponding pseudolikelihood is:

PL(θ;x) = α(θ)κn1
1 κ

n2
2 η

n1− 1
πr2

(ψ1(x1))

11 η
n2− 1

πr2
−(ψ2(x2))

22 η
2
πr2

ψ12(x)

12 (7)

where α(θ) is a function of parameters and is denoted by the exponentiated integral terms
as shown in Equation 6. The integrals (intractable due to the multi-dimensionality) are
estimated using a two-dimensional numerical integration approach of Simpson’s rule routine
for calculating the double integrals .

In this paper we refer to Astroloma xerophyllum as species 1 and Banksia menziesii as species
2 and consider 8 possible models. The saturated model contains five parameters and the re-
maining seven sub-models are constructed from different combinations of the presence or ab-
sence of three interaction parameters. Each model represents a different biologically plausible
hypothesis, and hence has a different parameter set. Table 1 illustrates the parameterization
of each model.

4.2. Edge correction

Since the observation window represents only a small subarea of the area of interest, interac-
tions of plants outside the window with those inside the window cannot be directly considered.
For example, if the unobserved points are close neighbours of an observed point, the num-
ber of close points (important consideration in secondary point pattern characteristics and
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Table 1: Model notation – the presence or absence of a parameter from the full parameter
set θ = {κ1, κ2, η11, η22, η12}, is denoted by 1 or 0 respectively.

Model Notation Parameters present in model

1 10000 κ1, κ2
2 11100 κ1, κ2, η11
3 11010 κ1, κ2, η22
4 11110 κ1, κ2, η11, η22
5 11001 κ1, κ2, η12
6 11101 κ1, κ2, η11, η12
7 11011 κ1, κ2, η22, η12
8 11111 κ1, κ2, η11, η22, η12

in both pairwise and area interaction point processes) would be underestimated. We apply
border (reduced sample estimator) edge correction (Baddeley and Turner 2000; Ripley 1988)
to the data set (bivariate point pattern) and conduct a separate analysis on the reduced sam-
ple (bivariate point pattern after edge correction) to compare estimates of each interaction
parameter. Models 2,3, and 5 are considered since these models contain only one interaction
parameter; model 2 contains η11, model 3, η22, and model 5, η12 For this scenario, essentially,
a border (the size of the interaction radius) is drawn 25 dm from the study border and points
which fall on or outside of this border contribute to the pseudolikelihood only as neighbouring
points to points within the reduced sample area. Other methods of edge correction include
translation, reflection and torroidal edge correction. Importantly, (Pommerening and Stoyan
2006) note that some edge correction approaches may introduce more error/bias than if no
edge correction method was applied. These authors suggest that the use of the reflection
method for example, introduces a high level of bias. Conducting studies over large areas
(plant communities in our case) is ideal for minimizing the edge effect.

We then compare the parameter estimates and model discrimination results obtained under
both the scenarios of edge correction and no edge correction. The reduced sample is illustrated
in Figure 7. There are approximately three clusters of points containing both species which
fall outside the reduced sample.

4.3. Bayesian inference

The analyses were conducted in a Bayesian framework, and accordingly, priors for each pa-
rameter (including the models considered) were specified. A Uniform prior was specified for
the intensity parameters where κ ∼ U [0, 1] and for the interaction parameters, a log normal
prior was specified such that log(η) ∼ N(0, σ2), and σ ∼ U [0, 10]. A prior sensitivity test was
incorporated in our analyses to determine the dependence of the prior specification for the
variance parameter on the results. As such, the following additional priors were considered:
σ ∼ U [0, 1], σ ∼ U [0, 100].

For a fixed model we specify the pseudo-posterior distribution of the parameters in the form:

π(θ|x) ∝ PL(θ;x)p(θ) where p(θ) denotes the (independent) priors specified on the parame-
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Figure 7: Plot showing the bivariate point pattern for the species pair comprising of As-
troloma xerophyllum and Banksia menziesii. Astroloma xerophyllum is denoted by red filled
circles. The reduced sample is the shaded area on the plot. The points which fall on or outside
the border (illustrated in a dashed line) are the ‘edge points’.
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ters and PL(θ;x) the pseudo-likelihood given in equation 6. The constant of proportionality
in the pseudo-posterior distribution is analytically intractable and equal to [PL(θ;x)p(θ)]−1.
Thus in order to obtain inference on the parameters θ, we employ an MCMC algorithm in
order to estimate the posterior summary statistics of interest, for example, posterior mean
and credible intervals, for the pseudo-posterior distribution.

Eight competing models were considered, which represent distinct research hypotheses. These
correspond to the inclusion/exclusion of each possible interaction. The models considered are
shown in Table 1. Each model was given equal probability of being selected in the model
discrimination routine. Therefore, for a given model ω, the probability of being selected is
1/8.

In the presence of model uncertainty we extend Bayes’ Theorem and consider the model to be
an unknown parameter to be estimated. We then form the joint posterior distribution over
both the models and the parameters:

π(θω, ω|x) ∝ PL(θω;x)p(θω|ω)p(ω)

where θω denotes the set of parameters in model ω.

A Metropolis-Hasting sampler is used for updating the parameters in each model and the
Markov chain Monte Carlo (MCMC) simulations were run for 10000 iterations (with 10%
removed as burn in) to obtain posterior estimates for the parameters of each model. Model
discrimination was performed used a reversible jump Markov chain Monte Carlo (RJMCMC)
algorithm. Note that for the RJMCMC algorithm, an additional parameter is introduced– the
model is treated as a parameter. This results in one Markov chain exploring both parameter
and model space simultaneously. The routine consists of two stages which are discussed in
turn below.

Suppose that at iteration t, the Markov chain is in model ω with parameter vector θω so
that the current model state is denoted as (θω, ω). The parameters are first updated given
the current model state using an MCMC sampler such as the Metropolis Hastings or Gibbs
samplers. This is the first stage of the RJMCMC procedure. The second stage involves
updating the model. Firstly, a proposal to move to a new model, ω

′
is made where each

alternative model is chosen with some specified probability. The probabilities of moving from
model ω to model ω′, and from model ω′ to model ω, are expressed as P (ω

′ |ω) and P (ω|ω′)
respectively. For this analysis, P (ω

′ |ω) and P (ω|ω′) are equal to 1/8. This means that each of
the eight models is selected with equal probability. Given the proposed model, new parameter
values, θ

′

ω′
, are generated. We specify a deterministic function, g(θω,u) = (θ

′

ω′
,u

′
), where g

is a bijective function such that u and u
′

are random variables and g−1(θ
′

ω′
,u

′
) = (θω, u). .

Note that u ∼ q(u|θ) and u
′ ∼ q′(u′ |θ′

) where q and q
′

are proposal distribution functions.

The proposal function, q(.) generates candidate parameter values which are used in the MCMC
acceptance function. The proposal function differs per model since each model consists of a
different parameter set. For example, for model eight (which contains five parameters), we use
a multivariate Gaussian distribution, N(µ,

∑∑∑
), to generate the candidate parameter values.

For this model a pilot run was made where a Uniform distribution was used to generate
each parameter (this method is know as a ‘Uniform random walk’). This is specified as
U($ − ι,$ + ι), where $ denotes the current parameter value (representing the current
state in the MCMC chain) and ι, a tuning parameter. The posterior summary statistics
(mean, variance) for this pilot model were then used to construct the mean vector, µ, and
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covariance matrix,
∑∑∑

, of the proposal function. The multivariate Guassian distribution was
used because it leads to faster MCMC convergence (especially when correlated parameters
are involved).

The move from model ω to model ω′ is accepted with probability min(1, A), such that

A =
π(θ

′

ω′
, ω
′ |x)P (ω|ω′)q′(u′ |θ′

)

π(θω, ω|x)P (ω′ |ω)q(u|θ)

∣∣∣∣∣δ(θ
′

ω′
, u
′
)

δ(θω, u)

∣∣∣∣∣ (8)

where the final term is a Jacobian term. We note that if g is the identity function, then the
Jacobian is equal to 1 and the δ(.) expression represents a partial derivative of the bijective
function g(.). The RJMCMC algorithm is summarized in Algorithm 1.

Input: ω = {1, ..., nω}, set of plausible models
Input: θω, set of parameters in model ω
Input: random variables u and u′ proposed by q(u|θ), q

′
(u

′
|θ

′
).

Input: P (ω
′
|ω), the probability of moving from model ω to model ω

′

Input: A =
π(θ

′

ω
′ ,ω

′
|x)P (ω|ω

′
)q

′
(u

′
|θ

′
)

π(θω ,ω|x)P (ω
′ |ω)q(u|θ)

∣∣∣∣∣ δ(θ
′

ω
′ ,u

′
)

δ(θω,u)

∣∣∣∣∣
Input: α(θω,θ

′

ω
′ ) = min (1, A) ; // acceptance functions

Output: Markov chain which traverses parameter and model space simultaneously
denote the initial model state as (θω, ω)
for t← 1, . . . , T do

Metropolis Hastings step: update parameter values, θω, given the model state ω
propose new model, ω

′
, with probability P (ω

′
|ω)

generate new parameter values, θ
′

ω
′ , given the proposed model ω

′

r ∼ U(0, 1)

if r ≤ α(θω,θ
′

ω
′ ); // accept/reject step

then
model state at iteration t+ 1 is updated to proposed model state and corresponding parameters ;
// (θω′ , ω

′
)

end
else

model state at iteration t+ 1 is identical to current model state at iteration t ; // (θω, ω)
end

end

Algorithm 1: The reversible jump MCMC algorithm

4.4. Model assessment

The model was assessed by comparing 500 instances (simulated data from the model) to
that observed. The cross pair correlation function for multitype point patterns was used to
compare the simulated data to the observed data.

5. Results

5.1. Parameter estimates

The posterior estimates for the parameters are given in Table 2. We note that the mean
posterior parameter estimates for the interactions obtained are consistent with the results
obtained in the exploratory analysis. In particular, the estimated posterior mean (standard
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deviation) for the log intraspecific interaction parameter in species 1 in model 2 (the model
which contains only this interaction) is 4.00 (0.62), signifying attraction. The exploratory
analysis indicated that the sub-pattern corresponding to this species was clustered. We note
also that the posterior estimates for this parameter are consistently positive across all the
models which contain it.

In model 3, the model which contains only one interaction parameter (which represents the
log interaction between plants of species 2), the mean (standard deviation) posterior estimate
is 0.59 (0.62); providing no evidence for an interaction among plants of species 2. The ex-
ploratory analysis indicated that the sub-pattern representing this species exhibited complete
spatial randomness (CSR). Note that across all the models (which contain this interaction
parameter), the credible intervals of the posterior estimate for the log interaction between
individuals of species 2 all contain zero.

The relative strengths of the intraspecific and interspecific interactions appear to differ.
For example, in the saturated model, consider the log intraspecific interaction in species
2. The mean posterior estimate is 0.75(0.44) whilst that for the log interspecific parameter is
5.19(0.36). Clearly the log interspecific interaction is one of attraction (the credible intervals
across all models containing this parameter contain non negative values), whilst that of the
intraspecific interaction parameter in species 2 appears to be negligible. We note that the
posterior estimates for the log interspecific parameter are consistently positive across all the
models which contain it.

summary model 1 model 2 model 3 model 4 model 5 model 6 model 7 model 8

κ11 mean 0.001898 6.7e-05 0.001918 7.9e-05 0.000124 1e-05 0.000144 1.1e-05

2.5% 0.001593 2e-05 0.001599 2.6e-05 8.4e-05 3e-06 7.9e-05 4e-06

97.5% 0.002254 0.000142 0.002276 0.000171 0.000167 1e-05 0.000231 2e-05

κ22 mean 0.000556 0.000553 0.000413 0.000381 3.6e-05 4.6e-05 2.9e-05 3e-05

2.5% 0.000394 0.000426 0.000174 2e-04 2.3e-05 2.8e-05 1e-05 1.4e-05

97.5% 0.000739 0.000686 0.000721 0.000595 5e-05 6.5e-05 6.2e-05 5.1e-05

η11 mean 4.001075 3.828321 3.124417 2.983804

2.5% 3.007814 2.835776 2.406887 2.127593

97.5% 5.021521 4.77873 3.990988 3.938942

η22 mean 0.590241 0.690396 0.701177 0.750893

2.5% -0.302122 -0.053537 -0.337348 0.033798

97.5% 1.686791 1.436854 1.788376 1.472338

η12 mean 5.578262 5.19695 5.37953 5.199629

2.5% 5.07291 4.634955 4.540732 4.620373

97.5% 6.11549 5.78256 6.191106 5.813661

σ mean 5.36505 3.231871 5.725265 6.559747 6.215054 4.910265 5.445704

2.5% 2.125722 0.226316 1.869868 2.899072 2.935592 2.284667 2.490686

97.5% 9.19976 7.967917 14.987599 9.611484 9.502591 8.370077 9.0334

Table 2: Posterior means and 95% credible estimates for parameters (2.5% quantiles are
provided).

A prior sensitivity analysis was conducted where σ ∼ U(0, 1) and U(0, 100). We note that the
interaction parameter values for the prior σ ∼ U(0, 1) are slightly lower than that obtained
with the other priors, indicating a degree of prior sensitivity. This is because this parameter,
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Table 3: Model posterior probabilities for prior sensitivity analysis (σ ∼ U(0, 10), σ ∼ U(0, 1),
and σ ∼ U(0, 100)).

Model U [0, 10] U [0, 1] U [0, 100]

1 0.026 0.018 0.027

2 0.021 0.016 0.021

3 0.021 0.015 0.015

4 0.020 0.011 0.022

5 0.101 0.151 0.142

6 0.345 0.515 0.349

7 0.139 0.063 0.105

8 0.326 0.211 0.318

σ, is constrained under the prior σ ∼ U(0, 1).

5.2. Model discrimination and assessment

For this data set, there are 8 competing models ω = {1, ..., 8} (see Table 1 for the model
indicators). The eight models considered in this analysis can be formally compared by using
model discrimination methods. In particular, model posterior probabilities are obtained,
providing a quantitative comparison of the models. An RJMCMC algorithm was implemented
for this purpose.

Table 3 shows the posterior model probabilities obtained for the analysis where σ ∼ U(0, 10)
and for the additional priors used in the prior sensitivity analysis. From this table, it is
observed that the model which received the highest posterior support is model 6, the model
with the interspecific interaction parameter and the intraspecific interaction parameter for
species 1. Lindley’s paradox is observed in this analysis – as the variance of the prior is
increased (σ ∼ U [0, 100]), the models with fewer parameters (models 1 to 4 in particular)
obtained an increase in posterior support.

From Table 3, it is observed that the posterior probability of the interspecific parameter η12
being present in a model is 91.13. The probabilities for the other interaction parameters η11
and η22 are 7.12 and 5.07 respectively, which are clearly much lower than that for η12. We
note that the model identified with the highest posterior support contains both η11 and η12.

Finally, model 6 was assessed by comparing simulated data from the model using a move-
birth-death algorithm based on that proposed by Møller and Waagepetersen (2003) to the
observed data. The cross pair correlation function for the simulated data was compared to
that obtained for the observed data as done by Picard et al. (2009). Overall the cross pair
correlation function for the simulated data (see Figure 8(a)) is consistent with that for the
observed data at most distances. In both cases clustering between the two species involved is
observed at the interpoint distance (r) of 25dm. Figure 8(b) shows an example of a simulated
data set. In this plot there is evidence of clustering together of points representing both
species and also a concentration of points at one side of the plot - similar to that observed in
the observed data in Figure 2.

Differences in the cross K12 function for these data sets may have been caused by unob-
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(a)

(b)

Figure 8: Plots showing (a) the cross K12 function for the observed data (blue line),700
simulated point patterns (grey lines), and the Poisson reference (red line), and (b) an example
of a simulated bivariate point pattern (species 2 is denoted by blue squares).
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served environmental factors and a resulting inhomogeneity, as observed for species 1 in the
exploratory analysis and to the fact that the interspecific interactions are assumed to be sym-
metric - that is the effect of species 1 on species 2 is assumed to identical to the reverse.
Future work will introduce asymmetric interspecific interactions into the modelling approach.

5.3. Edge Correction

After border edge correction was applied, the number of points in the resulting bivariate
point pattern was reduced from 117 to 77; the edge points were mostly clusters containing
individuals of mostly species 1 and lone points of species 2. Specifically, the number of points
for species two was decreased to 54% of the original sample size, whilst that for species 1
was reduced to 69% of the original sample size. The reduction in points led to smaller pos-
terior parameter estimates for the intraspecific interaction parameters and a larger posterior
estimate for the interspecific interaction parameter. For example, the intraspecific interac-
tion parameter for species 1 was estimated as 4.00 (3.01, 5.02) before edge correction; after
edge correction, the said parameter was estimated as 2.55 (1.73,3.46). The overall inference,
however, that there is an interaction amongst tress of this species of attraction remains.

6. Discussion

From the results, we note that the use of the area interaction process facilitated the identi-
fication of both inhibitory and attractive interactions. The interspecific interaction is found
to be attractive. The flexibility of an area interaction process to model both inhibitory and
attractive interactions makes it suitable for modelling data sets which possess a range of
interactions which might posses attractive as well as repulsive interactions.

The results also indicate that there is very strong support for the presence of the interspecific
parameter, an indication of decisive posterior support for this parameter. In addition, the
model with the highest posterior support is model 6 which contained two interaction param-
eters; the intraspecific interaction parameter for Astroloma xerophyllum and the interspecific
interaction parameter between the two species. A possible explanation for the attraction be-
tween the two species is that the Astroloma xerophyllum species benefits from being in close
proximity to the extensive proteoid roots of the Banksia species which modify the surround-
ing soil conditions facilitating nutrient uptake. In addition, Astroloma xerophyllum has been
reported to exist in symbiotic associations or mycorrhizas with ericoidal fungi (Bell and Pate
1996; Read 1995). The clustering of individuals of this species may be due to associations
between more than one Astroloma xerophyllum plant with the same ericoidal fungus, the
presence of which improves the efficiency of nutrient uptake by the associated plant. Studies
aimed at modelling the spatial positions of ericoidal fungi and Astroloma xerophyllum would
help clarify these clustered patterns. These symbiotic associations were not identified in the
univariate exploratory analyses - thus demonstrating the limited insight provided due to only
considering partial information.

The differences observed between the analyses with and without edge correction suggest that
the particular edge correction approach adopted for a given analysis may affect the results sig-
nificantly. In addition, it is evident that the decision to apply edge correction (and the choice
of edge correction) should be informed by other information such as the representativeness
of the study area and the underlying environmental conditions in the study area. If the en-
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vironmental conditions are heterogenous for example, the intensity of points representing the
individuals concerned would not be constant throughout the study area. This would create a
case for edge correction since it is more difficult to sample a representative plant community
from a region that is heterogenous in terms of plant density and environmental conditions.

Further analyses aimed at investigating the nature of the interspecific interactions (whether
or not they are asymmetric) would shed light on the underlying factors which give rise to
the spatial distribution of the two species. This would necessitate the use of an asymmetric
point processes. In this paper we have assumed that the interaction between the species is
symmetric – that is the effect of one species is identical to the reciprocal interaction. As
a result we have used the same interaction radius for both species. An extension to this
approach would be to adopt an asymmetric area interaction point process to model data sets
without the assumption that the interspecific interactions are symmetric. In this case the
interaction radii for the two species may be specified differently.

The quantification of inter- and intraspecific interactions is especially valuable for preserving
biodiversity and for informing reforestation and land rehabilitation efforts after wildfires.
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