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Abstract

We analyze the joint tail of two variables related to fire threat associated with Santa
Ana Winds in Southern California. To do this, we apply a flexible model for the joint
tail of asymptotically dependent multivariate distributions, when samples are taken at
several locations across space. We use a spatial prior on the underlying multivariate
extremal dependence structure, which enables us to borrow strength across space while
still allowing for different joint tail distributions at different spatial locations, and to
predict the joint tail of the distribution at un-observed locations. A simulation shows
that this model is able to capture complex dependence structures well.
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1. Introduction

We present a flexible model for the joint tail of asymptotically dependent multivariate dis-
tributions, when samples are taken at several locations across space. We use a spatial prior
on the underlying multivariate extremal dependence structure, which enables us to borrow
strength across space while still allowing for different joint tail distributions at different spa-
tial locations, and to predict the joint tail of the distribution at un-observed locations. We
apply our multivariate spatial model to joint extremes of two variables that, taken together,
are informative about extreme wildfire threat.

California suffers from fires that burn more than 172,000 acres of land annually. These fires
translate into loss of habitat, infrastructure, and life. In 2015, for example, wildfires caused
damage estimated to be more than $3 billion, with the biggest losses caused by fires started
from downed electrical power lines (CalFire 2015). As a consequence, it is important to un-
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derstand the conditions that allow wildfires to ignite and spread. The California Department
of Forestry and Fire Protection (CalFire) is responsible, among other things, for responding
to active fires and for forming risk mitigation strategies in the state. In order to efficiently al-
locate resources and formulate preventative policy proposals, CalFire needs to know where
conditions conducive to fire ignition and spread are likely to occur. Of particular interest are
the conditions that represent the most extreme threat.

Conditions that are conducive to wildfire ignition and spread are the subject of intense study
and have drawn keen interest of regulators and infrastructure planners. This interest has
reached new levels in the wake of the worst wildfire season in California history in 2018.
Furthermore, the tails of the distribution of fire threat characteristics warrant particular at-
tention because fire size and damage distributions have been shown to be sensitive to un-
derlying tail assumptions (Moritz, Morais, Summerell, Carlson, and Doyle 2005; Bowman,
Balch, Artaxo, Bond, Carlson, Cochrane, D’Antonio, DeFries, Doyle, Harrison, Johnston,
Keeley, Krawchuk, Kull, Marston, Moritz, Prentice, Roos, Scott, Swetnam, van der Werf,
and Pyne 2009). Here, we study the joint tail of two variables that represent the risk due to
meteorological conditions of wildfire ignition and spread potential.

One phenomenon that plays a key role in wildfire threat in California is the Santa Ana winds.
Santa Ana winds are an atmospheric condition in Southern California that produces hot, dry,
high-speed winds that originate in inland desert regions. This phenomenon is particularly
active during the period of October through March. Because of these characteristics, and
because they occur in a region of high development and population density, these winds are
responsible for initiating particularly damaging wildfires (Westerling, Cayan, Brown, Hall,
and Riddle 2004). We therefore focus our attention to the region of Southern California that
experiences Santa Ana winds.

A common ignition mechanism in the Southern California is electrical arcing resulting from
utility poles downed in high winds. We therefore take wind speed to be the key meteoro-
logical variable that serves as a proxy for fire ignition potential. The composite Fosberg Fire
Weather Index (FFWI) combines relative humidity, temperature, and wind measurements
into a single measure of fire weather that determines fire spread potential (Fosberg 1978).
Moritz, Moody, Krawchuk, Hughes, and Hall (2010) reconstructed the weather at South Cal-
ifornia during the Santa Ana wind season, and found that high level of FFWI was associated
with higher frequency of wild fires. We therefore study the joint tail of wind speed and FFWI,
which represents the region in the space of meteorological variables where the probability
of ignition and the potential for spread is concurrently extreme.

There have been previous approaches to modeling multivariate extreme observations. Coles
and Tawn (1991) described 6 parametric distributions to model multivariate extremal de-
pendence: the asymmetric and negative asymmetric logistic models, the Dirichlet model,
the biologistic model, the nested logistic model, and the time series logistic model. More
recent work includes Cooley, Davis, and Naveau (2010), who proposed the pairwise beta
distribution, which defines a full joint distribution for multivariate extremes through their
pairwise relationships, similar to a covariance matrix for Gaussian data. Vettori, Huser,
Segers, and Genton (2017) used Bayesian model averaging with the nested logistic model
defined in Coles and Tawn (1991) to probabilistically create clusters of exchangeable depen-
dent variables, with dependence allowed to differ among clusters. They used reversible
jump methods to average across the random number of clusters.
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Several nonparametric approaches have been proposed as well, mostly limited to the bi-
variate case. Most focus on estimating the spectral measure, which we define in Section 2.
Einmahl, de Haan, and Piterbarg (2001) estimated the bivariate spectral measure nonpar-
metrically using the ranks of the data, and proved consistency and asymptotic normality.
Einmahl and Segers (2009) also estimated the bivariate spectral measure, this time using an
empirical likelihood approach. de Carvalho, Oumow, Segers, and Warchoł (2013) proposed a
simplified version of the Einmahl and Segers (2009) bivariate estimator using Euclidean like-
lihood approach, and showed that it has the same asymptotic behavior. Guillotte, Perron,
and Segers (2011) proposed a nonparametric Bayesian scheme to estimate the bivariate spec-
tral measure. The infinite-dimensional prior on the spectral measure was shown to be dense
in the space of valid spectral measures. Inference was performed using a trans-dimensional
metropolis Hastings algorithm.

The problem is considerably more difficult in dimension greater than two. Marcon, Padoan,
Naveau, Muliere, and Segers (2017) used Bernstein polynomials to estimate the Pickands
dependence function, which is an alternative way of characterizing an extreme-value de-
pendence. This approach in principle applies to any dimension, but is difficult to scale to
more than two dimensions. Most closely related to the current work is Boldi and Davison
(2007), who proposed a nonparametric mixture of Dirichlet distributions to model the depen-
dence structure between arbitrarily many variables through the spectral distribution, after
standardization of the margins to unit Fréchet. A critical moment restriction resulted in very
poor mixing of the MCMC, however, and limited the practicality of the approach. Sabourin
and Naveau (2014) fit an identical model using a re-parametrization of the Dirichlet mixture
that avoids the awkward constraints and associated mixing problems.

An important aspect of our model is that it borrows strength across space to improve es-
timation of the multivariate tail dependence. However, we make no attempt to model the
spatial dependence of the extreme events themselves. In this sense, our model inherits from
Cooley, Nychka, and Naveau (2007), which considers a univariate response and places spa-
tial Gaussian process priors on marginal generalized Pareto parameters. In contrast, a great
deal of recent effort has been made to model the spatial dependence in the extreme events
themselves (for a review, see Davison, Huser, and Thibaud 2013). Models that attempt to
simultaneous capture both multivariate dependence and spatial dependence of the extreme
events include multivariate max-stable processes (Genton, Padoan, and Sang 2015; Reich
and Shaby 2018). These models are more realistic than our model in the sense that when
limiting spatial dependence in the response variables is strong, multivariate max-stable pro-
cesses can account for it. However, the dependence that they allow between variables is
much more restrictive than our model.

This paper will describe a model for multiple variables while taking into account the spatial
dependence in the multivariate relationships. We describe the model in the general case of d
variables, although we later restrict our attention to the special case of d = 2 for wind speed
and FFWI. Section 2 describes the model originally proposed by Boldi and Davison (2007)
and re-parameterized by Sabourin and Naveau (2014), and our extension from a single mul-
tivariate sample to a collection of multivariate samples observed at several spatial locations.
Section 3 describes our simulation study to assess the performance of our model. Finally,
Section 4 contains the joint analysis of wind speed and FFWI in southern California.
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2. Model

Our model for the joint tail of wind and FFWI builds upon classical extreme value theory.
We will define the model for d-dimensional random vectors, and proceed with the analysis
for the special case of d = 2, which pertains to our application. Let Y be a random vector
of observations in Rd with joint distribution function F and marginal distribution Fi for
1 ≤ i ≤ d. Define a new variable of transformed observations X as

X = (−1/F1(Y1), ...,−1/Fd(Yd))

so that each Xi has a unit Fréchet marginal distribution, i.e. P (Xi ≤ x) = e−1/x. This trans-
formation allows all variables to have a common marginal distribution that is convenient for
defining the dependence structure among them in the far joint tail. To model the dependence
in the far tail of a random vector whose margins are unit Fréchet, it is useful make a further
transformation from the original coordinates to pseudo-polar coordinates. First, define the
radial component to be

R =
d∑
i=1

Xi (1)

and the angular component to be

W =
X

R
, (2)

where W ∈ Sd and Sd is the unit simplex defined by
{
w : wi ≥ 0,

∑d
i=1 xi = 1

}
. This trans-

formation us useful because, as long as F is in the multivariate maximum domain of attrac-
tion of a max-stable random vector, F can be expressed in terms of its angular and radial
components, which are independent in the limit (Resnick 1987). That is, for a large radial
threshold r0,

P (R > r,W ∈ A | R > r0) =
r

r0
H(A)

as r0 → ∞, for r > r0, A ∈ Sd, and H a probability distribution usually referred to as the
angular distribution or the angular measure. This decomposition makes it clear that the de-
pendence structure of the random vector is completely described by the angular probability
measureH , independent of the radial component. As a consequence, to define the model for
dependence in the joint tail, we need only to consider the angular measureH , independently
of the distribution of the radial component.

A probability measureH on Sd is a valid angular probability measure if and only if it satisfies
the moment condition ∫

Sd
widH(w) =

1

d
for all i = 1, . . . , d. (3)

Several parametric families have been proposed that can be used to modelH (Cooley, Davis,
and Naveau 2012, e.g.), but in general, no parametric family includes the entire space of
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valid angular measures because, as long as the constraint (3) is satisfied, H is otherwise
un-restricted.

Tail dependence between a pair of variables is often succinctly summarized using the quan-
tity known as χ, defined as a limit as the quantile q approaches 1 as

χ = lim
q→1

P
(
Yi > F−1i (q) | Yj > F−1j (q)

)
.

When the tail dependence parameter χ has a limiting value greater than zero, we say the
two variables are asymptotically dependent. The interpretation of asymptotic dependence
is that regardless of how far in the tails of the distribution components of the random vector
are, the components remain dependent on one another. When the probability mass of the
angular distribution H is concentrated in the interior of the simplex, the result is asymptotic
dependence among the variables (Resnick 1987). Conversely, when the limiting value of χ is
zero, we say the two variables are asymptotically independent, with the interpretation that
if one goes far enough in the tails of the distribution, components become independent of
one another. If any probability mass of H lies on the vertices or edges of the simplex, the
corresponding variables are asymptotically independent.

In the context of wind and FFWI, asymptotic dependence would imply that far in the tail of
he distribution, extreme values wind speed and extreme FFWI could occur simultaneously.
In contrast, assuming asymptotic independence would mean that in the far in the tail, ex-
treme values of wind speed and extreme values of FFWI would never occur concurrently.
For the scope of this paper we will assume asymptotic dependence between wind speed
and FFWI. This assumption is natural because wind speed is one of the ingredients of FFWI,
so we would expect that extreme values of wind speed would be strongly associated with
extreme values of FFWI. We therefore model the dependence in the joint tail by considering
angular measures that have mass concentrated in the interior of the simplex.

2.1. Semi-parametric representation of multivariate dependence

Since multivariate dependence in the far tail is entirely described by a distribution H on the
unit simplex, we focus our efforts of specifying a flexible representation for H that can be
extended to the multivariate spatial context. The best-known distribution with support on
the unit simplex is the Dirichlet distribution. A sensible approach then to constructing flex-
ible models for angular distributions H would be to use Dirichlet distributions as building
blocks. Boldi and Davison (2007) proposed a semi-parametric model for H using a mixture
of Dirichlet distributions. The density of this mixture model is defined as

h(w) =
K∑
k=1

pk
Γ(νm)∏J

j=1 Γ(νmµ
(m)
j )

J∏
j=1

w
νµj−1
j , (4)

where pk is the mixture weight of the kth component, with pk ≥ 0,
∑K

k=1 pk = 1, µk ∈
Sd is the location parameter of of the kth component, and νk ∈ R+ is the concentration
parameter of the kth component. This model is attractive because it is very flexible compared
to other parametric models. The modeler can choose the number of components K to be
as large as needed estimate the angular density h(w) well, including shapes of h(w) that
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are not symmetric and have otherwise unusual shapes. In fact, as K → ∞, this family of
distributions is dense in the space of distributions on the interior of the simplex, which in a
sense makes this model as flexible as one would ever want. The difficulty with this model
arises from the moment restriction (3). This restriction is enforced by requiring that

k∑
i=1

piµi = (1/d, ..., 1/d). (5)

This constraint on the parameters forces the model to satisfy (3), but because it is not a
hyper-rectangle in the parameter space, it makes estimation difficult. Specifically, when esti-
mating the parameters using Markov Chain Monte Carlo (MCMC) methods, the constraint
(5) makes the components of the chain highly dependent, leading to catastrophically poor
mixing (Boldi and Davison 2007).

Re-parametrization of the mixture model

To mitigate the difficulties caused by the constraint (5), Sabourin and Naveau (2014) re-
parametrized the mixture model (4) in a way that replaces the dependent constraint (5) with
independent box constraints on a transformed set of parameters. The transformation is made
from the original parameters to the new parameters such that T (p1, . . . , pk,µ1, . . . ,µK) =⇒
(ε1, . . . , εK−1,µ1, . . . ,µK−1), where εm ∈ (0, 1),m = 1, . . . ,K − 1 (See Appendix A for de-
tails). This transformation replaces the original mixture weights p1, . . . , pK and the Kth lo-
cation parameter µK and replaces them with a collection of K − 1 “eccentricity” parameters
ε1, . . . , εK−1. The last location parameter µK may be recovered as a deterministic function of
the firstK−1 locations and the eccentricities, with the reduced degree of freedom taking the
place of the awkward constraint (5). The key is that under the Sabourin and Naveau (2014)
parameterization, the moment constraint (3) is satisfied even though all parameters εi and
µi, 1 ≤ i ≤ K − 1, are independent of each other in the prior. Hence, the parameter space
becomes a hyper-rectangle, and the complicated cross dependencies that hindered MCMC
mixing in the original parameterization are completely removed.

2.2. Spatial prior

Our main goal is to use spatial information to both improve estimation of the flexible multi-
variate tail dependence model and be able to predict the dependence structure at locations
where no observations are sampled. Since the tail dependence is completely described by
the mixture defined by equation (4), allowing the (transformed) parameters in (4) to vary
smoothly in space is equivalent to allowing the dependence structure to vary smoothly in
space. We therefore allow each parameter in the mixture to follow a smooth process so that
locations close together will have similar values, while locations farther apart will have val-
ues that are independent from each other.

To induce this spatial smoothing in the underlying dependence parameters, we assign them
Gaussian process priors according to

log(νk(s)) ∼ GP(X(s)βνk , Cνk) for k ∈ 1, ...,K

logit(εk(s)) ∼ GP(X(s)βεk , Cεk) for k ∈ 1, ...,K − 1

µk ∼ Dirichlet(µ0, ν0) for k ∈ 1, ...,K − 1,

(6)
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where the notation GP(m(s), C) refers a Gaussian process with mean function m(s) and
covariance function C, and X(s) is a collection of spatially-varying covariates. The prior
specification in (6) also includes link functions necessary to transform the support of the pa-
rameters to the real line. For example, each concentration parameter ν(s0) at a location s0 is
a value in R+, so taking its logarithm allows us to assign it a Gaussian process prior. Simi-
larly, we transform each eccentricity parameter ε(s0) at location s0 from (0, 1) to the real line
using the logit function. Finally, the first K − 1 Dirichlet location parameters µ1, . . . ,µK−1
are shared across spatial locations to avoid over-parameterization (see Lock and Dunson
2015), and have independent Dirichlet priors. Because of the lost degree of freedom from the
Sabourin and Naveau (2014) parameterization, the remaining Dirichlet location parameter
µK(s) is a function of the other location parameters and the spatially-varying eccentricities,
so it is itself spatially varying, even though it is not assigned a prior distribution.

For simplicity, all covariance functions are assumed to be stationary and isotropic, with
Cνk(si, sj) = σ2νk exp{−‖si − sj‖/ρνk} independently for k ∈ 1, ...,K for the log concentra-
tion parameters and Cεk(si, sj) = σ2εk exp{−‖si − sj‖/ρεk} independently for k ∈ 1, ...,K −
1 for the logit eccentricity parameters. To complete the model, the scale and range pa-
rameters σν1 , . . . , σνK , ρν1 , . . . , ρνK , σε1 , . . . , σεK−1 , and ρε1 , . . . , ρεK−1 are all assigned vague
zero-centered positive half normal priors, and the regression coefficients βν1 , . . . ,βνK and
βε1 , . . . ,βεK−1 are assigned vague zero-centered normal priors.

2.3. MCMC

We fit the model using Markov Chain Monte Carlo (MCMC), for a fixed number of mixture
components K, and then use model diagnostics to choose the value of K (see Section 3). All
parameter updates are performed using Metropolis-Hastings (MH), except the regression
coefficients, which have closed-form full conditional distributions. All MH proposals are
random walk normal proposals, except for µ1, . . . ,µK−1, which live on the unit simplex and
get Dirichlet proposals.

3. Simulation

We performed a simulation study to assess the performance of the model. We created a
grid of 20 spatial locations on the unit square and sampled 100 replications from our model
at those locations. We constructed h(w) according to (4) using three mixture components.
The spatial range parameters ρν1 , ρν2 , ρν3 , ρε1 and ρε2 were all set to 0.2, which results in
moderate spatial correlation for the Dirichlet parameters across the spatial domain. The spa-
tially varying covariate matrix X(s) was a column vector of ones for simplicity, specifying
an intercept-only model. The regression coefficients β corresponding to the concentration
parameters were set to 3, and those corresponding to the eccentricity parameters were set
to -1.791 for the first component and 0.619 for the second component. The first 2 Dirichlet
location parameters µ1 and µ2 were set to (0.4, 0.6) and (0.2, 0.8), respectively.

We fit the model four times, with the number of components ranging from 2 to 5. For com-
parison with a parametric model for the angular distribution, we also fitted a logistic model
(Coles 2001) to the data, using a spatial Gaussian process prior for the logistic dependence
parameter α. Since mixture models are susceptible to label switching, convergence diagnos-
tics based on MCMC parameter trace plots are ineffective. Instead, we monitored conver-



8 Spatial Semi-parametric Extremes

gence by plotting the posterior log likelihood of the data. To choose the number of compo-
nents, we used 5-fold cross validation, using the log likelihood as the criterion. To do this,
we randomly divided the 20 locations into 5 groups of 4 and ran the model 5 times, each
time using 16 locations for model fitting and the remaining 4 locations for evaluation. The
average log likelihood across the 5 test sets, for the varying number of model components
as well as the logistic model, are shown in table 1.

Table 1: Cross validation results for the dependence model with 2 to 5 components, as well as
the parametric logistic model. The cross validation procedure chose 2 mixture components,
although the data was simulated using 3 components.

# Components CV log likelihood
Logistic −105.18

2 52.53
3 −92.49
4 −181.77
5 −176.29

Even though the data was simulated using 3 mixture components, the cross validation pro-
cedure found that the model with 2 components to be the best fit. Figure 1 shows the true
simulated angular density h(w) in black at four arbitrarily-selected locations, along with
the predicted posterior angular density using the best-fitting spatial Dirichlet mixture with
2 components (blue curve) and corresponding pointwise 95% credible region (blue region).
The fitted spatial logistic model and corresponding pointwise 95% credible region is shown
in red. It is evident from Figure 1 that the simple parametric model is not capable of ac-
curately representing the somewhat complex tail dependence in the simulated data, as ev-
idenced by the credible region failing to include the true curve over much of the domain.
In contrast, the mixture model with 2 components does a qualitatively good job capturing
the important features, even though the true density was simulated with three components.
From Figure 1 then, it is not surprising that cross validation selected 2 components rather
than 3.

4. Analysis of concurrent extreme wind speed and FFWI

The data we used for this analysis consists of daily maximum wind speeds, along with other
variables needed to construct the Fosberg Fire Weather Index, from 20 weather stations in
a region of Southern California that is susceptible to the Santa Ana Winds. The data was
downloaded from the Hadley Center website (available at http://www.metoffice.gov.
uk/hadobs/hadisd/index.html). We extracted the data from October through March,
when the Santa Ana Winds are most active, from 1973–2015, and calculated FFWI using the
formula in Fosberg (1978). Figure 2 shows the locations of the weather stations we consid-
ered, which lie inside a 22,500 km2 area in Southern California which includes large popu-
lation centers like Los Angeles and San Diego. This location is of particular interest because
because of its vulnerability to large wildfires and its proximity to so much at-risk population
and infrastructure.

http://www.metoffice.gov.uk/hadobs/hadisd/index.html
http://www.metoffice.gov.uk/hadobs/hadisd/index.html
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Figure 1: Predicted and true simulated angular densities for 4 arbitrarily-chosen spatial lo-
cations. The solid black curve is the true angular density h(w). The solid red curve is the
posterior mean angular density estimated using the logistic model, and the red band is the
corresponding pointwise 95% credible region. The blue curve is the posterior mean angular
density estimated using the mixture of Dirichlets from (4), and the blue band is the corre-
sponding pointwise 95% credible region.

4.1. Marginal model

Our tail dependence model assumes unit Fréchet marginal distributions for exceedances of
high thresholds, for all components. We therefore have to choose thresholds and transform
wind speed and FFWI to unit Fréchet. The standard technique for transforming to unit
Fréchet is to use a nonparametric rank transformation. We did not do this for two reasons.
First, we wanted to use spatial information to borrow strength in estimating the marginal
distributions. Second, applying a rank transformation to data at observation locations would
have left us no way to predict at un-observed locations. For these reasons, we used a spatial
model to estimate the marginal distributions. To do this, we fit spatial generalized extreme
value (GEV) distribution models separately to annual maxima of the wind speed and FFWI
variables. This model uses Gaussian process priors for GEV location and (log) scale parame-
ters, and assumes conditionally independent responses, similar to the model in Cooley et al.
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Figure 2: Location of weather stations in California.

(2007). We included latitude, longitude and elevation as covariates in the marginal models
for both wind speed and FFWI. We fit this model using the implementation in the R pack-
age SpatialExtremes (Ribatet 2018). Figure 3 shows the 50 and 100-year return level surface
calculated from the fitted models for the wind speed (Figure 3b and 3d) and FFWI (Figure
3a and 3c) marginal components.

Return values of FFWI are smaller near the coast compared to values in the northeastern
portion of the study region. In contrast, areas along the coast tend to have the strongest
extreme wind, with the northeastern portion tending to have less extreme wind speeds. Over
almost the entire region, the 100-year return level is greater than 100, which is sometimes
considered the largest feasible value of FFWI.

We selected days when both FFWI and wind speed exceeded their marginal 90% empirical
quantiles (35.15 and 18.34mph for FFWI and wind speed, respectively), where the quantiles
were computed by pooling data across all observed locations. Out of the original 127,802
and 143,162 daily observations from FFWI and wind speed, respectively, 10,484 and 12,027
exceeded their respective marginal thresholds, and 6,228 did so simultaneously. Setting the
threshold at 90% empirical quantiles was a compromise between being far enough in the tail
for the asymptotic model to be a good approximation on one hand, and on the other hand
having enough data to fit the dependence model.

Based on the posterior sample of the marginal GEV parameter fields obtained from the spa-
tial GEV model, we marginally transformed the exceedances to unit Fréchet using the pos-
terior mean GEV parameters at the observation locations.

4.2. Dependence model

After transforming the exceedances to unit unit Fréchet, we further transformed them into
pseudo-polar coordinates using equations (1) and (2). We then fit our spatial multivariate
extremal dependence model to the derived angles.
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Figure 3: Posterior mean 50 and 100 year return levels for FFWI and wind speed components.

In order to choose the number of components to include, we used cross validation, ran-
domly partitioning the data into 5 folds by location, just as in the simulation in Section 3.
This scheme of cross validation selects for the ability to predict the joint tail at un-observed
locations, preventing over-fitting at any individual location, which helps to regularize the
estimation of the flexible tail model. Table 2 shows the cross validation results for the FFWI
and wind speed data. The cross validation suggests that the 4-component model provides
the best fit. Therefore, we proceed with this analysis using 4 mixture components. For com-
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parison, we also evaluated a spatial logistic model the same cross validation scheme. As
Table 2 shows, the logistic model is not competitive with any of the mixture models, and is
unable to fit the dependence well.

Table 2: Cross validation results for the extremal dependence between FFWI and wind
speed, for a spatial logistic model and spatial mixture models with 2 to 5 mixture com-
ponents. The righ-hand column shows predictive log likelihoods when all replications at
80% of the locations are used for fitting and the remaining 20% of the locations are used for
testing. Larger log likelihoods are preferred.

# Components CV log likelihood
Logistic −6195.596

2 −6075.282
3 −5537.285
4 −4794.236
5 −5075.750

Proceeding with a 4-component mixture, we re-fit the model using the complete data. Figure
4 shows the fitted angular densities for 4 locations in the study region. Solid lines represent
pointwise posterior means, and shaded regions represent pointwise 95% credible regions.
Observed angles are shown as ticks on the x-axes. These four locations show considerable
heterogeneity in their joint tail characteristics between FFWI and wind speed. At all ob-
served locations, the tick marks coincide with high posterior density, which suggests that
the model is doing a good job capturing the dependence, and that imposing the restriction
that the Dirichlet location parameters must be shared across space was not too restrictive. In
each angular density plot, the angular mass is concentrated far in the interior of the simplex,
suggesting that the two variables are indeed asymptotically dependent in this geographical
region.

In addition to the spatial prior enabling borrowing strength across locations, it also enables
spatial prediction of the joint tail at un-observed locations. Figure 5a shows the predicted
angular density at one such un-observed location, which was burned by the disastrous Lilac
Fire in 2017. At this particular location, the model predicts strong dependence between
extreme FFWI and wind speed, with the highest posterior density at around 0.3. This result
indicates that joint extremes of FFWI and wind speed are likely to occur simultaneously,
exacerbating fire threat due to each variable being individually extreme.

To make this result more interpretable, we back-transformed the two variables from pseudo-
polar coordinates to the unit Fréchet scale and then to the scale of the original data, and
calculated joint exceedance probabilities implied by the angular density shown in Figure 5a.
The tail of the joint survivor function of FFWI and wind speed predicted at this location is
shown in Figure 5b. Each contour represents a set of constant joint exceedance probability.
That is, at every (y1, y2) point along the contour of constant probability p, the joint probability
of FFWI exceeding y1 and wind speed exceeding y2 is p. The joint survivor function might
be of direct use for risk management. For example, if safety standards require consideration
of events that have probability 0.00005 (i.e. events which occur on average once every 100
years, since our study period is about 200 days in each year), these events in the joint space
of FFWI and wind speed are described by the contour in Figure 5b labeled 5e−05.
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Figure 4: Estimated posterior densities for 4 locations across Southern California. The black
curves are the pointwise posterior mean densities, the gray bands are the 95% pointwise
credible bands, and the ticks on the x-axes are the observed angles.

5. Conclusion

We analyzed the joint tail of two variables related to fire threat associated with Santa Ana
Winds in Southern California. We wanted a flexible model that could accommodate the com-
plicated shape of the angular distribution that determines extremal dependence between the
two variables. We used spatial priors to regularize estimation of the flexible angular distri-
bution model, which also enabled us to predict the joint tail at un-observed locations. Do
do this, we used a mixture of Dirichlet distributions, combined with the new parametriza-
tion proposed by Sabourin and Naveau (2014). The re-parametrization enabled the mixture
parameters to be independent in the prior for each location, which enabled specification
of Gaussian process priors to borrow strength between locations. Our simulation analysis
showed that the model is capable of recovering complicated shapes of tail dependence, and
5-fold fold cross validation did a reasonable job of choosing a good number of mixture com-
ponents. Although we restricted our attention to the bivariate case due to the structure of
the fire threat application, the spatial mixture of Dirichlet distributions is straightforwardly
generalizable to higher dimensions.
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Figure 5: Panel (a) shows the predicted angular density at an un-observed location which
was near the center of the Lilac Fire in 2017. The solid line represents the pointwise posterior
mean, and the shaded region represents the pointwise 95% credible region. Panel (b) shows
the estimated joint survivor function of FFWI and wind speed, calculated by transforming
pseudo-polar coordinates with the angular density in panel (a) first to unit Fréchet vectors
and then to the original scale of the data. Each contour represents a set of constant joint
exceedance probability. For example, at every (y1, y2) point along the contour labeled 5e−04,
the joint probability of FFWI exceeding y1 and wind speed exceeding y2 is 5e−04.

The joint analysis of extreme Fosberg Fire Weather Index and wind speed was able to capture
the tail dependence between the two variables, as well as the spatial correlation in the angu-
lar densities across locations. One possible drawback to our modeling approach is that it is
unable to capture spatial tail dependence in the extreme events themselves (as opposed to
spatial dependence in the underlying joint tail distribution), so that if one wished to evaluate
areal joint exceedance probabilities, that would be impossible. For example, if practitioners
needed to know the probability that an area of at least size A would simultaneously experi-
ence a joint exceedance of X FFWI and Ymph wind, they would not be able to do that with
our model.

A second drawback of our approach is that we estimated marginal surfaces and transformed
marginally to unit Fréchet as a pre-processing step. Done this way, the uncertainty in the
marginal transformation is not propagated to the final analysis. It might be possible to do
both simultaneously, as Sabourin (2015) did in the non-spatial context. We made a sustained
attempt to adapt the Sabourin (2015) model to the spatial context so that we could properly
account for uncertainty in the marginal estimation, but we were unable to make it work.

One limitation of our result is that FFWI only takes into account wind speed, temperature,
and humidity, and it assumes that the fuels are extremely fine with high moisture of extinc-
tion, a condition most suited to grasslands. In particular, FFWI does not take into account
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precipitation. This means that the index assumes a constant fuel moisture and equilibrium
moisture content. This is a known limitation for operational applications. A modified ver-
sion of FFWI was proposed by Goodrick (2002) to include information about precipitation
and fuel availability, and could be used instead of the original FFWI in a similar analysis to
the one presented here.
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A. Parameter transformation

The main goal of the transformation proposed by Sabourin and Naveau (2014) is to remove
the constraint (5) which induces strong prior dependence in the parameters and causes disas-
trously poor MCMC mixing. After transformation, new parameter space becomes a rectan-
gular subset of Sk−1d × (0, 1)K−1 × (R+)K , removing the prior dependence and dramatically
improving MCMC mixing. Intuitively, we replace the weight vector p and the last mean
vector µK by new parameters ε1, . . . , εK−1. Where each εm ∈ (0, 1) is referred to as an ec-
centricity, defined to indicate departure from centrality induced by decreasing the subsets of
mixture components. The idea is that we decrease the number of parameters by one, with
the decreased degrees of freedom playing the role of the constraint in the original parame-
terization. The transformation is defined by a series of recursive equations.
First, given the original parameters p1, . . . , pK and µ1, . . . ,µK , each eccentricity parameter
εm is defined as

εm =
‖γm − γm−1‖
‖Im − γm−1‖

. (7)

This transformation uses intermediate variables Im, γm, and γm−1. Each γm can be inter-
preted as the the center of mass of the mth mixture component. Each γm is then defined
as

γm = ρ−1m

K∑
j=m+1

pjµj , (8)

which depends on a collection of variables ρ0, . . . , ρK−1. The first ρ0 = 1 and the remaining
ρ1, . . . , ρK−1 are defined recursively as

ρm = ρm−1 − pm. (9)

Finally, each Im in (7) is set according to

Im = γm−1 + Tm(γm−1 − µm), (10)
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where Tm = sup{t ≥ 0 : γm−1 + t(γm−1 − µm) ∈ Sd}
The result is that the transformed parameters live in rectangular region and still result in
mixtures that satisfy the moment constraint (3). See Sabourin and Naveau (2014) for addi-
tional details.
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