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Abstract

Using the control time of a forest or wildland fire, defined as the time from the start
of suppression action to the time that it is declared under control, we extend the analysis
from Morin et al. (2015) to investigate spatial trends in forest fire survival probability
across Ontario’s Intensive Fire Management Zone for the period 1989 to 2004. The fire
management compartments (FMCs) described in Woolford et al. (2009) form the spatial
units of analysis. Spatial differences are explored in our study region by using proportional
hazards shared frailty models which incorporate a random effect to modify the hazard for
fires within each FMC. Estimates of this excess risk are used to visualize spatial patterns.
We show that the frailty models achieve better fit, as compared to the models without
frailty terms, and that the model assumptions are suitable for these data. Visualizing the
estimated FMC-specific frailties suggest the following: lightning-caused fires in a region of
northwestern Ontario have experienced shorter control times than comparable lightning
fires that occur elsewhere; and, people-caused fires in that same region in northwestern
Ontario as well as a region of southern Ontario may also have experienced shorter control
times than comparable people-caused fires that have occurred elsewhere.

Keywords: Cox proportional hazards, forest fires, random effects, shared frailty, survival, time-
to-event modelling, wildfires.
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1. Introduction

Forest and wildland fires have had a significant detrimental impact on people, property and
forest resources in recent years and those impacts are not expected to subside anytime soon
(Moritz et al. 2014; Stocks and Martell 2016). Although fire is a natural component of
many forest ecosystems, forest fire management agencies strive to reduce the area burned by
destructive fires. These fires pass through several stages of control that begin when they are
first reported and classed as being “Being Investigated” (BIV) or “Not Under Control” (NUC),
then “Being Held” (BHE), “Under Control” (UCO) to finally being declared “OUT”. A BHE
fire is one for which “with currently committed resources, sufficient suppression action has
been taken that the fire is not likely to spread beyond existent or predetermined boundaries
under prevailing and forecasted conditions” (CIFFC 2003). The longer they remain in the
BIV, NUC or BHE states, the longer they remain exposed to fire weather conditions that may
be conducive to further growth and destruction. Once a fire is classes as UCO, it is viewed as
“having received sufficient suppression action to ensure no further spread of the fire” (CIFFC
2003).

The need for fire suppression resources varies both temporally and spatially. Strategic plan-
ning requires fire managers to decide where to home base their suppression resources at the
beginning of each fire season as well as daily deployment decision-making associated with
deciding how to redeploy them on a daily or hourly basis. Knowledge concerning areas where
more values at risk coincide with long times required to bring fires under control can and
should inform strategic planning decision-making. Wildland fire management agencies can
use such information to selectively allocate suppression resources to the fires which are more
likely to survive longer in an uncontrolled state. Under stressed systems, when prioritizing
fires is most crucial, a modelling technique for the control time of fires could be an invaluable
asset to the strategic, tactical and operational planning systems.

Morin et al. (2015) presented an overview of survival analysis methods in the context of
an analysis of historical records of forest fires that occurred in the former Intensive Fire
Management Zone in the Province of Ontario, Canada during the period 1989 through 2004.
Cox proportional hazards (PH) models with fire weather and management covariates were
employed to quantify the hazard rate of a suppressed fire being brought under control, with
separate models fit to lightning and people-caused fires. Regardless of the cause of ignition,
the size at initial attack and measures of short-to-moderate fuel moisture were significant
predictors for both causes of ignition. Response time was found to be a significant predictor
for lightning-caused fires. The time of day at the onset of initial attack efforts along with
the Drought Code, a long-term fuel moisture code (see e.g., Wotton 2009), were found to
be significant predictors for fires started by people. Our work extends that of Morin et al.
(2015). We incorporate frailties, namely a set of site-specific random effects, that are used to
account for unobserved or unmeasured factors that may also be affecting fire control times in
a given area. Visualization of the frailty terms allows us to explore for spatial trends in the
control times of wildland fires.

We note that the analysis of time-to-event or survival data is common in the biostatistical
literature (e.g., Fleming and Lin 2000), in which frailty models are often employed to capture
the spatial correlation between observations (e.g., Banerjee et al. 2003). Frailty models are also
sometimes used in ecological studies; examples include the probability of tree establishment
from germinated seedlings (Goheen et al. 2010) and the probability of bird nest survival
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(Liebezeit et al. 2009). Posterior estimates of random effects are commonly visualized to
explore for spatial patterns. For example, geographic distributions of disease risk have been
studied by extracting the posterior estimates of spatial random effects. In such studies,
hotspots of high risk geographic areas are identified and targeted for resources with the goal
of minimizing the “noise” in the map of the spatial random effects (e.g., Lawson 2001). In
a similar fashion, we use spatially-referenced frailty terms (random effects) to investigate for
spatial patterns in the control time of wildland fires, after accounting for key factors that
influence the “lifetimes” of such fires over a set of polygons that partition our study area.

The remainder of our paper is structured as follows: we begin the next section by describing
our data and study region and presenting some exploratory analyses. We then describe the
framework for modelling the control time of fires using frailty models in Section 3. Cox PH
shared frailty models are fit and spatial patterns are examined using choropleth maps in
Section 4. The goodness of fit of these models, along with an examination of the modelling
assumptions are also presented. We conclude the study with a discussion of our results, the
associated forest fire management implications and future work in Section 5.

2. Data and Study Region

Our study region consists of the former Intensive Fire Management zone of Ontario. This
region covers diverse forest landscapes which can result in differences in characteristics of fire
regimes, such as spatial differences in seasonal patterns in fire occurrence risk baselines as doc-
umented by Woolford et al. (2009). In this paper, we extend the Cox PH models presented in
Morin et al. (2015) to account for spatial heterogeneity by assigning a common random effect
term to observations within small polygons that form a spatial partition of the region using
shared frailty models. The spatial units of analysis are a set of fire management compartments
(FMCs). As described in Woolford et al. (2009), researchers in the Fire Management Systems
Laboratory in the Faculty of Forestry at the University of Toronto created this partition by
overlaying the map of Fire Management Zones in Ontario (see OMNR 2004) with a digital
map of ecoregions (see Ecological Stratification Working Group (Canada) 1996) and then
further subdividing some of the resulting polygons to create a final set of FMC polygons that
were approximately the same size. Each FMC can be assumed to be approximately internally
homogeneous with respect to ecological characteristics such as fuel, weather and topography,
as well as fire management strategy. The study area along with the set of FMC polygons are
shown in Figure 1.

Historically, the strategy in this area was to actively suppress all fires that were reported as
soon as resources were available. However, changes to the number of zones and each zone’s
management strategy occurred in 2004 (OMNR 2004). Consequently, we focussed our analysis
on the period prior to this change to both avoid management strategy changes as possible
confounders and so that we can compare our results to the aspatial models of Morin et al.
(2015).

Our fire data consists of the 7,303 lightning and 8,311 people-caused forest fires included in the
historical fire management records provided by the Ontario Ministry of Natural Resources and
Forestry that occurred in the Intensive Fire Management zone of Ontario during the period
from 1989 through to 2004.
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Figure 1: Ontario’s Forest Fire Management Zones (shaded areas) prior to 2004 along with
the fire management compartment (FMC) partition (polygons) as described in Woolford et al.
(2009). The set of FMCs in the Intensive Fire Management Zone that comprise of our study
area are numbered.
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We define the control time of a fire as the time from the onset of initial attack action to the
time that the fire is declared under control. During this time interval, suppression crews are
actively suppressing the fire to quickly and safely bring it to a state of “Being Held” and then
“Under Control” at a reasonable cost. Figure 2 displays the number of lightning and people-
caused fires which occurred in each of the compartments during our study period, where
the width of the bars represent the median control times of these fires. Note in particular,
that FMC 15 experienced the most lightning-caused fires. Note also that those fires have the
shortest median control time; we return to discuss this later in this paper. Figure 3 displays the
smoothed Kaplan-Meier (KM) (e.g., see Lawless 2003) estimates of the survival probabilities
of lightning and people-caused fires by compartment. While all the survival curves in this
figure have similar shapes, they clearly exhibit region-specific differences; these differences
seem to be more pronounced for lightning-caused fires, as compared to people-caused fires.

To account for some of this region-specific heterogeneity, fire weather components of the
Canadian Forest Fire Danger Rating System (CFFDRS) (Stocks et al. 1989), namely the
Fine Fuel Moisture Code (FFMC), the Initial Spread Index (ISI), and the Drought Code
(DC), were included in the frailty models as fixed effects. The FFMC is representative of the
moisture content of the dead fine fuels on the surface of the forest floor, while the ISI is a
measure of the potential rate of spread of a fire. The DC is representative of the moisture
in the deep organic layers of the forest floor. Additional fixed effects included in the frailty
models are the response time, defined as the time interval (hours) from when a fire is reported
to the start of initial fire suppression action, as well as the size (ha) of the fire at the start
of initial attack; longer response times are associated with larger fires at initial attack, which
are hypothesized to result in longer control times as they are more difficult to suppress.
Stratification by the time of day that initial attack begins, categorized as morning, afternoon,
or evening as defined in Morin et al. (2015) and similar factor variables (with morning as the
baseline) are used in the models for lightning and people-caused fires, respectively. This was
done to ensure that the plateaux features visible in the left-tails of the KM curves, caused
by suppression being suspended overnight, are appropriately modelled (see Morin et al. 2015,
Figure 4).

3. A Framework for Modelling the Control Time of Fires

Let T be a random variable representing the control time of a fire. Its observed value, t, is
the time between the onset of initial attack action and the time that the fire is declared under
control. In the following framework, the hazard, λ(t), represents the instantaneous rate at
which a fire will be declared under control at time t, conditional on it having survived up to
that point in time (Lawless 2003).

3.1. The PH Shared Frailty Model

The purpose of frailty models is to describe the excess risk, commonly referred to as frailty,
for distinct categories (Therneau and Grambsch 2000). The main ideas in our modelling
are that: not all fires are assumed to have the same underlying survival time distribution;
there could be other unobserved or unmeasurable factors impacting that distribution; and an
unmeasured random effect is used to account for this source of heterogeneity between survival
times of fires in different geographic regions (Hosmer et al. 2008).
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Figure 2: The frequency (height of bars) and median control time (width of bars) of lightning
(top panel) and people-caused (bottom panel) fires by fire management compartment.
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Figure 3: Smoothed Kaplan-Meier estimates of the probability of survival of lightning (top
panel) and people-caused (bottom panel) fires by fire management compartment (coloured
lines) in the former Intensive Fire Management zone of Ontario.
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In the shared frailty model each fire belongs to only one of the distinct FMCs and all fires
within an FMC share a common random effect term; these random effects are assumed to be
independent of each other (Therneau et al. 2003). Fires in the same FMC share the same
random effect distribution to account for spatial dependency among fires within the same
geographic region. Conditional on the FMC compartments, we assume that the control times
of the fires independent since each FMC can be viewed as being approximately internally
homogeneous with respect to ecological characteristics such as fuel, weather and topography,
as well as fire management strategy. The FMC-specific random effects are referred to as the
frailty terms. These frailty terms render each individual fire’s hazard bigger or smaller than
the baseline hazard (Lawless 2003). The hazard rate from the PH shared frailty model takes
the form

λij(t) = λg(t)ex
′
ijβ+ωi

where i indexes the FMCs, j indexes the fires in FMC i, g indexes any stratification (e.g., we
stratify by time-of-day in our model for the control time of person-caused fires as was also
done in Morin et al. (2015)), λg is the baseline hazard rate of fires in stratum g, x′ij is the
transpose of the covariate vector with associated parameter vector β and ωi is the random
effect term of the fires in FMC i. Note that if ωi is set to 0 for all FMCs (i.e., there is no
spatial effect), then this hazard rate is equivalent to the aspatial Cox PH model used in Morin
et al. (2015).

When fitting such models, the random effects are included in the hazard rate as unobserved
continuous covariates which are assumed to follow a probability distribution with a fixed
mean and unspecified variance. The choice of the distribution of the random effect is based
on the structure present in the data being modeled. In practice, the most common choices
include the gamma distribution with mean 1 and the normal distribution with mean 0. The
latter is used in this paper as it allows flexibility and we later demonstrate that this normal
frailty term is appropriate for our analysis. The parameters in the Cox PH frailty model are
estimated using a two-step iterative procedure to maximize the penalized partial likelihood,
the details of which may be found in Ripatti and Palmgren (2000).

4. Results

The results presented in this section were produced using the coxme package of Therneau
(2012) in R (R Core Team 2014). We first present the results of fitting shared frailty models
to lightning-caused fires and then those for people-caused fires, followed by model assessment.

4.1. Exploring for Spatial Patterns Using Shared Frailty Models

Semi-parametric Cox PH shared frailty models with zero-mean, normally distributed ran-
dom effects are fit to lightning and people-caused fires with resulting random effect variance
estimates of 0.0295 and 0.0189, respectively. The parameter estimates, standard errors and p-
values of the fixed effects from these fitted models are displayed in Table 1. For comparatison,
the fixed effects used in these models and the time-of-day stratification for people-caused fires
are the same as in the Cox PH models reported in Morin et al. (2015). The negative param-
eter estimates indicate a decreased hazard rate with increasing covariate values; equivalently
this is indicative of the probability of survival increasing with the covariate in question.
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Table 1: Parameter estimates, standard errors and p-values of the fixed effects from the fitted
stratified proportional hazards shared frailty model of lightning-caused fires (top panel) and
proportional hazards shared frailty model of people-caused fires (bottom panel).

Lightning-caused Fires

Parameter Estimate (Std. Error) P-Value

Response time -0.0091 (9.2 × 10−4) < 0.001
FFMC -0.0090 (1.1 × 10−3) < 0.001
Size at initial attack -0.0002 (8.8 × 10−5) 0.0190
ISI -0.0149 (5.1 × 10−3) 0.0034

People-Caused Fires

Parameter Estimate (Std. Error) P-Value

Size at initial attack -0.0252 (2.4 × 10−3) < 0.001
ISI -0.0286 (3.9 × 10−3) < 0.001
DC -0.0010 (9.4 × 10−5) < 0.001
FFMC -0.0061 (1.3 × 10−3) < 0.001
Iafternoon initial attack -0.1316 (3.5 × 10−2) < 0.001
Ievening initial attack -0.1574 (3.8 × 10−2) < 0.001

The posterior estimates of the random effects, ω̂i, are displayed in the choropleth maps in
Figure 4. The exponentiated posterior estimates are interpreted as multiplicative factors
on the hazard rate. Thus, negative posterior estimates imply a reduction in the hazard
rate of fires, or analogously, an increase in the survival probability. The choropleth maps
apply the brightest red colour of the heat palette to compartments with the largest negative
posterior estimates to imply greater fire danger through to the palest yellow being applied
to compartments with the largest positive posterior estimates to imply the least fire danger.
The visualization of broad spatial patterns is achieved by using legend interval lengths which
represent standard deviations from the mean of the random effect estimates. These choropleth
maps suggest that there is a region in northwestern Ontario (FMC 15) where fires are more
likely to experience shorter control times and that people-caused fires the extreme southeast
(FMCs 1 and 2) also are more likely to experience shorter control times when compared to
similar fires elsewhere in the study area. We return to this point in our discussion where we
postulate the potential sources that may be contributing to this reduced risk.

4.2. Assessing Significance and Assumptions

Following Therneau and Grambsch (2000), we use a profile likelihood-based confidence interval
as a preliminary assessment of the significance of the frailty terms in our models. At the 95%
confidence level this interval is represented by the intersections of the likelihood ratio (LR) test
statistics for a sequence of random effect variances with a horizontal line at the critical value
of a chi-squared test on 1 degree of freedom. The resulting intervals for lightning and people-
caused fires are (0.0137, 0.0733) and (0.0087, 0.0480), respectively. These intervals suggest
that the frailty terms of the models are significant in terms of this preliminary assessment since
they are relatively narrow. Therneau and Grambsch (2000) suggest that the significance of
the frailty term is more strongly evaluated by an LR test comparing the integrated-likelihood
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Figure 4: Choropleth maps of lightning (top panel) and people-caused (bottom panel) fires
where each FMC in the Intensive Fire Management Zone (the study area) is assigned a heat
map colour based on its estimated frailty term. For comparable fires across different FMCs,
namely for fires where all other predictors are held constant, FMCs with negative frailties
have fires with longer control times and FMCs with positive frailties have fires with shorter
control times. Since gaussian frailties were employed, the colour pallettes use interval lengths
that are equal to the standard deviations of the random effects for a given model, except
for the interval that contains 0 (orange) which has a width equal to two standard deviations
centred at zero.
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of the frailty model, where the frailty terms are integrated out of the likelihood, to the Cox
PH fitted likelihood without a frailty term. Based on this comparison, both the lightning and
people-caused frailty models are significant improvements over the respective proportional
hazards models without frailty terms. However, it is of note that this Chi-squared test is
conservative since the frailty terms, eω, are constrained to be non-negative.

The suitability of using normally distributed frailty terms is verified by fitting Cox PH models
with additional fixed effects for the FMCs. FMC 15, the compartment in the western region
which experiences the largest number of lightning-caused fires, was chosen as the baseline
compartment. To make the random effects from the frailty models comparable to the fixed
effects, FMC 15’s posterior estimate is subtracted from the other posterior estimates such
that the values are representative of the multiplicative difference on the hazard rate of fires
in FMC 15. The differences between these fixed and random effects are displayed in the
choropleth maps in Figure 5. These differences are small, suggesting that the use of normally
distributed frailty terms is reasonable.

5. Discussion

In this paper, the results of Morin et al. (2015), where the control time of forest fires was
modeled using survival analysis methods, were extended to explore for spatial trends. This was
achieved by incorporating random effects in the Cox PH models which improved the fits due
to the presence of correlation between the control times of fires within a set of FMCs which
formed a partition of the former Intensive Fire Management Zone of Ontario’s fire region.
The PH shared frailty models were each fit with a zero-mean normally distributed random
effect term which represented the FMCs. These frailty terms were found to be significant
by creating profile likelihood-based confidence intervals and by performing LR tests which
compared the integrated-likelihoods of the frailty models and the likelihoods of the models
without frailty terms.

The normal frailty assumption was verified by re-creating these choropleth maps using fixed
effects for each FMC. The fixed effect parameter estimates were similar to the posterior
random effect estimates which suggests that this assumption is reasonable. In the future,
these types of frailty models could be extended to a region with more compartments such as
the entire Province of Ontario.

The parameter estimates associated with the fixed effects were negative, indicating increases
in the survival probability. This result is similar to that of the aspatial model in Morin et al.
(2015) in which it was discussed that these relations are consistent with the structure of the
fire weather variables (increasing with greater fire risk), as well as with the fire management
beliefs that it is important to minimize initial attack response time and that larger fires are
more diffcult to bring under control. The initial attack time of day effect also suggested
that fires attacked later in the day tend to have greater survival probabilities, which is likely
attributed in part to the overnight suspension of suppression action.

Choropleth maps were created using the posterior estimates of the random effects from each
FMC. The map from the model of lightning-caused fires displayed more prominent patterns,
resulting from a larger estimate for the variance of the random effect, than the map from the
model of people-caused fires; in the latter, none of the compartments had posterior estimates
which where greater than two standard deviations from the mean. While the random effect
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Figure 5: The differences between the parameter estimates of the compartment-specific fixed
effects and the posterior estimates, in reference to FMC 15, from the frailty model of lightning
(top panel) and people-caused (bottom panel) fires.
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terms improved the fits of both models, possibly accounting for regional differences in land-use
in the model of people-caused fires, the analysis of spatial patterns in the case of lightning-
caused fires is of particular importance as lightning strikes tend to arrive in spatio-temporal
clusters from passing storm systems (Woolford and Braun 2007). The choropleth maps of
lightning-caused and people-caused fires illustrated that FMC 15 in the western region of the
Intensive Fire Management Zone seems to be more likely to have fires with shorter control
times than the average across the entire study region. Note that this compartment has both a
number of small and medium sized communities (e.g., Kenora, Minaki, Sioux Narrows), and
a number of indigenous communities (e.g., Naotkamegwanning First Nation, Obashkaanda-
gaang First Nation), as well as a high concentration of vacation homes on and near Lake of
the Woods. Recognition of theses values at risk coupled with the fact that Kenora District
experienced high fire activity in the past have contributed to the Ontario Ministry of Natu-
ral Resources & Forestry deploying their initial attack resources such that they can quickly
respond to fires that are reported in FMC 15. FMC 15’s initial attack response time is also
influenced by the fact that the adjacent province of Manitoba’s wildfire management program
can and does, from time to time, dispatch their airtankers to carry out “quick strike” initial
attack on fires in Kenora district.

Fire management agencies are responsible for making important decisions which include
strategic protection planning and fire suppression resource allocation. Some of these deci-
sions, such as the daily deployment and prioritization of fires when heavy fire loads are being
experienced, are critical to the protection of people, property and forest resources. The type
of modelling presented in this paper could provide fire managers and planners additional in-
formation to consider when making such decisions. The choropleth maps presented in this
study could be used to identify and classify areas of high or low risk in terms of the control
time of forest fires after accounting for fire weather and fire management variables. This infor-
mation could be used to inform fire management strategic planning processes such as strategic
resource acquisition and home basing (placement of crews and aircraft), as well as regional
targeting of programs aimed at raising public awareness about fire prevention. Choropleth
maps of posterior estimates of frailty terms could be used to monitor the spatial “noise” in
control time. For example, a historical period could be used to determine a baseline and
posterior estimates of the frailty terms for the same modelling framework fit to more recent
data, such as the current fire season or recent fire season(s), could be compared to their cor-
responding baselines. In this sense, the choropleth maps could also be used to monitor and
revise fire management plans over time.

Our work could be extended in future related studies. For example, the control time analyzed
in this paper was defined as the time period from the onset of initial attack to the fire being
declared under control. A similar exploration of spatial patterns of this control time could
be applied to alternative time periods including using the time of ignition or report of the
fire as the lower-bound of the time period. It is of note however, that the time of ignition
is often estimated and using this lower-bound would therefore require that left-censoring be
accounted when fitting models to such data. Another potential future avenue of study would
be to extend the framework to account for a sequence of time-dependent fire weather covariates
that are observed over the entire control time of each fire, rather than individual fire-weather
covariates observed at a fixed point in time as we employed in our modelling herein.



14 Frailty Models for the Control Time of Wildland Fires

Acknowledgements

We thank the Ontario Ministry of Natural Resources and Forestry for providing the data
used in this study as well as C.B. Dean and B.M. Wotton for their helpful conversations.
We acknowledge the support of the Natural Sciences and Engineering Research Council of
Canada (NSERC) through its Discovery Grants program [RGPIN-2015-04221, RGPIN-2015-
04936] and of the Canadian Statistical Sciences Institute (CANSSI) through its Collaborative
Research Team program.

References

Banerjee S, Wall MM, Carlin BP (2003). “Frailty modeling for spatially correlated survival
data, with application to infant mortality in Minnesota.” Biostatistics, 4(1), 123–142.

CIFFC (2003). “The 2003 Glossary of Forest Fire Management Terms.” Technical report,
Canadian Interagency Forest Fire Centre, 210-310 Weston Street, Winnipeg, Manitoba,
Canada, R3E 3H4.

Ecological Stratification Working Group (Canada) (1996). A National Ecological Framework
for Canada. Agriculture and Agri-Food Canada, Research Branch, Centre for Land and
Biological Resources Research and Environment Canada, State of Environment Directorate,
Ecozone Analysis Branch, Ottawa/Hull. Report and national map at 1:7.5 million scale.
URL http://sis.agr.gc.ca/cansis/publications/ecostrat/index.html.

Fleming TR, Lin DY (2000). “Survival analysis in clinical trials: past developments and future
directions.” Biometrics, 56(4), 971–983.

Goheen JR, Palmer TM, Keesing F, Riginos C, Young TP (2010). “Large herbivores facilitate
savanna tree establishment via diverse and indirect pathways.” Journal of Animal Ecology,
79(2), 372–382.

Hosmer DW, Lemeshow S, May S (2008). Applied Survival Analysis: Regression Modeling of
Time-to-Event Data. Wiley.

Lawless JF (2003). Statistical models and methods for lifetime data. John Wiley & Sons.

Lawson AB (2001). “Disease map reconstruction.” Statistics in Medicine, 20(14), 2183–2204.

Liebezeit J, Kendall S, Brown S, Johnson C, Martin P, McDonald T, Payer D, Rea C, Streever
B, Wildman A, et al. (2009). “Influence of human development and predators on nest
survival of tundra birds, Arctic Coastal Plain, Alaska.” Ecological Applications, 19(6),
1628–1644.

Morin AA, Albert-Green A, Woolford DG, Martell DL (2015). “The use of survival analysis
methods to model the control time of forest fires in Ontario, Canada.” International Journal
of Wildland Fire, 24(7), 964–973.

Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J, Hessburg PF, Leonard J, Mc-
Caffrey S, Odion DC, Schoennagel T, et al. (2014). “Learning to coexist with wildfire.”
Nature, 515(7525), 58.

http://sis.agr.gc.ca/cansis/publications/ecostrat/index.html


Journal of Environmental Statistics 15

OMNR (2004). Forest Fire Management Strategy for Ontario. Ont. Min. Nat. Res., Queen’s
Printer for Ontario, Toronto, 64p.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Ripatti S, Palmgren J (2000). “Estimation of multivariate frailty models using penalized
partial likelihood.” Biometrics, 56(4), 1016–1022.

Stocks B, Martell DL (2016). “Forest fire management expenditures in Canada: 1970–2013.”
The Forestry Chronicle, 92(3), 298–306.

Stocks BJ, Lynham TJ, Lawson BD, Alexander ME, Van Wagner CE, McAlpine RS, Dube
DE (1989). “Canadian Forest Fire Danger Rating System: an overview.” The Forestry
Chronicle, 65(4), 258–265.

Therneau T (2012). coxme: Mixed Effects Cox Models. R package version 2.2-3, URL http:

//CRAN.R-project.org/package=coxme.

Therneau TM, Grambsch PM (2000). Modeling survival data: extending the Cox model.
Springer.

Therneau TM, Grambsch PM, Pankratz VS (2003). “Penalized survival models and frailty.”
Journal of Computational and Graphical Statistics, 12(1), 156–175.

Woolford DG, Braun WJ (2007). “Convergent data sharpening for the identification and
tracking of spatial temporal centers of lightning activity.” Environmetrics, 18(5), 461–479.

Woolford DG, Braun WJ, Dean CB, Martell DL (2009). “Site-specific seasonal baselines for
fire risk in Ontario.” Geomatica, 63(4), 355–363.

Wotton BM (2009). “Interpreting and using outputs from the Canadian Forest Fire Danger
Rating System in research applications.” Environmental and Ecological Statistics, 16(2),
107–131.

http://www.R-project.org/
http://CRAN.R-project.org/package=coxme
http://CRAN.R-project.org/package=coxme


16 Frailty Models for the Control Time of Wildland Fires

Affiliation:

Amy A. Morin, Alisha Albert-Green, and Douglas G. Woolford*
Department of Statistical and Actuarial Sciences
University of Western Ontario
London, Canada

*Corresponding author e-mail: dwoolfor@uwo.ca

David L. Martell
Faculty of Forestry
University of Toronto
Toronto, Canada

Journal of Environmental Statistics http://www.jenvstat.org

Volume 9, Issue 5 Submitted: 2019-05-01
September 2019 Accepted: 2019-09-15

mailto:dwoolfor@uwo.ca
http://www.jenvstat.org

	Introduction
	Data and Study Region
	A Framework for Modelling the Control Time of Fires
	The PH Shared Frailty Model

	Results
	Exploring for Spatial Patterns Using Shared Frailty Models
	Assessing Significance and Assumptions

	Discussion

